1 / 10
00
اضرب:
777 +++ 2p2p2p === g(p)g\left(p\right)g(p) ;;; 222 −-− 3p3p3p === f(p)f\left(p\right)f(p)
(f⋅g)(p)=5p2+21p+14(f⋅g)(p)=5p^2+21p+14(f⋅g)(p)=5p2+21p+14
(f⋅g)(p)=6p2+17p−14(f⋅g)(p)=6p^2+17p-14(f⋅g)(p)=6p2+17p−14
222 +++ 2s2s2s === d(s)d\left(s\right)d(s) ;;; 333 +++ 2s2s2s === c(s)c\left(s\right)c(s)
(c⋅d)(s)=2s2+10s+6(c⋅d)(s)=2s^2+10s+6(c⋅d)(s)=2s2+10s+6
(c⋅d)(s)=4s2+12s+6(c⋅d)(s)=4s^2+12s+6(c⋅d)(s)=4s2+12s+6
444 +++ 2m2m2m === b(m)b\left(m\right)b(m) ;;; 444 +++ 5m5m5m === a(m)a\left(m\right)a(m)
(a⋅b)(m)=10m2+28m+16(a⋅b)(m)=10m^2+28m+16(a⋅b)(m)=10m2+28m+16
(a⋅b)(m)=10m2+30m+20(a⋅b)(m)=10m^2+30m+20(a⋅b)(m)=10m2+30m+20
111 −-− lll === b(l)b(l)b(l) ;;; 111 +++ lll === a(l)a\left(l\right)a(l)
(a⋅b)(l)=l2−1(a⋅b)(l)=l^2-1(a⋅b)(l)=l2−1
(a⋅b)(l)=l2+1(a⋅b)(l)=l^2+1(a⋅b)(l)=l2+1
111 −-− 2v2v2v === u(v)u\left(v\right)u(v) ;;; 333 −-− 4v4v4v === t(v)t\left(v\right)t(v)
(t⋅v)(u)=8v2−12v+4(t⋅v)(u)=8v^2-12v+4(t⋅v)(u)=8v2−12v+4
(t⋅v)(u)=8v2−10v+3(t⋅v)(u)=8v^2-10v+3(t⋅v)(u)=8v2−10v+3
333 −-− 2b2b2b === f(b)f\left(b\right)f(b)
(f⋅f)(b)=4b2−12b+9(f⋅f)(b)=4b^2-12b+9(f⋅f)(b)=4b2−12b+9
(f⋅f)(b)=4b2−6b+6(f⋅f)(b)=4b^2-6b+6(f⋅f)(b)=4b2−6b+6
444 −-− 2s2s2s === g(x)g\left(x\right)g(x) ;;; 222 −-− 4s4s4s === f(s)f\left(s\right)f(s)
(f⋅g)(s)=8s2−20s+8(f⋅g)(s)=8s^2-20s+8(f⋅g)(s)=8s2−20s+8
(f⋅g)(s)=6s2−12s+6(f⋅g)(s)=6s^2-12s+6(f⋅g)(s)=6s2−12s+6
666 +++ 3a3a3a === s(a)s\left(a\right)s(a) ;;; 444 −-− 6a6a6a === t(a)t\left(a\right)t(a)
(t⋅s)(a)=18a2+24a−24(t⋅s)(a)=18a^2+24a-24(t⋅s)(a)=18a2+24a−24
(t⋅s)(a)=18a2+36a−20(t⋅s)(a)=18a^2+36a-20(t⋅s)(a)=18a2+36a−20
111111 −-− xxx === g(x)g\left(x\right)g(x) ;;; 111111 +++ xxx === f(x)f\left(x\right)f(x)
(f⋅g)(x)=x2−121(f⋅g)(x)=x^2-121(f⋅g)(x)=x2−121
(f⋅g)(x)=x2+121(f⋅g)(x)=x^2+121(f⋅g)(x)=x2+121
777 +++ rrr === g(r)g\left(r\right)g(r) ;;; 444 +++ 8r8r8r === f(r)f\left(r\right)f(r)
(f⋅g)(r)=8r2+56r+28(f⋅g)(r)=8r^2+56r+28(f⋅g)(r)=8r2+56r+28
(f⋅g)(r)=8r2+60r+28(f⋅g)(r)=8r^2+60r+28(f⋅g)(r)=8r2+60r+28
إنتهى الإختبار.