1 / 10
00
:إملأ الفراغ
∫cosxdx=\int_{ }^{ }\cos xdx=∫cosxdx=
tanx−c\tan x-ctanx−c
sinx+c\sin x+csinx+c
−cosx+c-\cos x+c−cosx+c
∫secxdx=\int_{ }^{ }\sec xdx=∫secxdx=
ln∣secx+tanx∣+c\ln\left|\sec x+\tan x\right|+cln∣secx+tanx∣+c
ln∣sinx+tanx∣+c\ln\left|\sin x+\tan x\right|+cln∣sinx+tanx∣+c
∫exdx=\int_{ }^{ }e^xdx=∫exdx=
ex+ce^x+cex+c
e2x+clxe^{2x}+clxe2x+clx
∣sinx∣+c\left|\sin x\right|+c∣sinx∣+c
∫tanxdx=\int_{ }^{ }\tan xdx=∫tanxdx=
ln∣secx∣+c\ln\left|\sec x\right|+cln∣secx∣+c
∫cosecxdx=\int_{ }^{ }\operatorname{cosec}xdx=∫cosecxdx=
ln∣cosecx−cotx∣+c\ln\left|\operatorname{cosec}x-\cot x\right|+cln∣cosecx−cotx∣+c
ln∣sinx∣+c\ln\left|\sin x\right|+cln∣sinx∣+c
∫sinxdx=\int_{ }^{ }\sin xdx=∫sinxdx=
ln∣x∣+c\ln\left|x\right|+cln∣x∣+c
∫sec2xdx=\int_{ }^{ }\sec^2xdx=∫sec2xdx=
tanx+c\tan x+ctanx+c
∫cosec2xdx=\int_{ }^{ }\operatorname{cosec}^2xdx=∫cosec2xdx=
−cotx+c-\cot x+c−cotx+c
∫cotxdx=\int_{ }^{ }\cot xdx=∫cotxdx=
∫1xdx=\int_{ }^{ }\frac{1}{x}dx=∫x1dx=
[x]nn+1−c\frac{\left[x\right]^n}{n+1}-cn+1[x]n−c
[ln(x)]nn+1+c\frac{\left[\ln\left(x\right)\right]^n}{n+1}+cn+1[ln(x)]n+c
إنتهى الإختبار.