1 / 10
00
Which of the following quadratic functions is decreasing?
f(x)=x2+2,x≤0f(x)=x^2+2,x\le0f(x)=x2+2,x≤0
f(x)=−x2−2,x≥0f(x)=-x^2-2,x\ge0f(x)=−x2−2,x≥0
f(x)=x2,x≤0f(x)=x^2,x\le0f(x)=x2,x≤0
f(x)=−x2,x≥0f(x)=-x^2,x\ge0f(x)=−x2,x≥0
Which of the following linear functions is decreasing?
g(x)=x+2g(x)=x+2g(x)=x+2
h(x)=−x+2h(x)=-x+2h(x)=−x+2
f(x)=xf(x)=xf(x)=x
f(x)=−xf(x)=-xf(x)=−x
f(x)=x+2f(x)=x+2f(x)=x+2
f(x)=−x+2f(x)=-x+2f(x)=−x+2
g(x)=−x+5g(x)=-x+5g(x)=−x+5
h(x)=x+5h(x)=x+5h(x)=x+5
g(x)=−x2+2,x≤0g(x)=-x^2+2,x\le0g(x)=−x2+2,x≤0
h(x)=〖−x〗2+2,x≥0h(x)=〖-x〗^2+2,x\ge0h(x)=〖−x〗2+2,x≥0
g(x)=xg(x)=xg(x)=x
h(x)=−xh(x)=-xh(x)=−x
Which of the following function is decreasing?
g(x)=x x≥0g(x)=\sqrt{x}\ \ x\ge0g(x)=x x≥0
h(x)=x2,x≤0h(x)=x^2,x\le0h(x)=x2,x≤0
g(x)=〖−x〗2−1,x≥0g(x)=〖-x〗^2-1,x\ge0g(x)=〖−x〗2−1,x≥0
h(x)=x2+1,x≥0h(x)=x^2+1,x\ge0h(x)=x2+1,x≥0
It is done.