1 / 10
00
Evaluate h(π6)h\left(\frac{\pi}{6}\right)h(6π) in h(x)=coscosxh(x)=\cos\cos xh(x)=coscosx
32\frac{\sqrt{3}}{2}23
7
12\frac{1}{2}21
Evaluate f(π3)f\left(\frac{\pi}{3}\right)f(3π) in f(x)=coscosxf(x)=\cos\cos xf(x)=coscosx
1
Evaluate g(0)g\left(0\right)g(0) in g(x)=coscos2xg(x)=\cos\cos2xg(x)=coscos2x
0
2
Evaluate f(0)f\left(0\right)f(0) in f(x)=coscos x2f(x)=\cos\cos\ \frac{x}{2}f(x)=coscos 2x
-2
Evaluate f(π6)f\left(\frac{\pi}{6}\right)f(6π) in f(x)=2coscosxf(x)=2\cos\cos xf(x)=2coscosx
3\sqrt{3}3
Evaluate g(π2)g\left(\frac{\pi}{2}\right)g(2π) in g(x)=coscosxg(x)=\cos\cos xg(x)=coscosx
-1
Evaluate h(π3)h\left(\frac{\pi}{3}\right)h(3π) in h(x)=xh\left(x\right)=xh(x)=x
evaluate h(π)h(\pi)h(π) in h(x)=coscosxh(x)=\cos\cos xh(x)=coscosx
Evaluate g(π2)g\left(\frac{\pi}{2}\right)g(2π) in g(x)=coscos2xg(x)=\cos\cos2xg(x)=coscos2x
3
evaluate f(3π2)f\left(\frac{3\pi}{2}\right)f(23π) in f(x)=coscosxf(x)=\cos\cos xf(x)=coscosx
It is done.