1 / 10
00
Evaluate g(0)g\left(0\right)g(0) in g(x)=sinsin2xg(x)=\sin\sin2xg(x)=sinsin2x
0
3
-9
Evaluate f(π2) in f(x)=sinx−1.f(\frac{\pi}{2})\ in\ f(x)=\sin x-1.f(2π) in f(x)=sinx−1.
Evaluate h(π6)h\left(\frac{\pi}{6}\right)h(6π) in h(x)=sinsinxh(x)=\sin\sin xh(x)=sinsinx
7
12\frac{1}{2}21
Evaluate h(π)h(\pi)h(π) in h(x)=sinsinxh(x)=\sin\sin xh(x)=sinsinx
1
-1
Evaluate g(π2)g\left(\frac{\pi}{2}\right)g(2π) in g(x)=sinsin2xg(x)=\sin\sin2xg(x)=sinsin2x
Evaluate f(π) in f(x)=sinx.f(\pi)\ in\ f(x)=\sin x.f(π) in f(x)=sinx.
Evaluate g(π2)g\left(\frac{\pi}{2}\right)g(2π) in g(x)=sinsinxg(x)=\sin\sin xg(x)=sinsinx
Evaluate f(3π2)f\left(\frac{3\pi}{2}\right)f(23π) in f(x)=sinsinxf(x)=\sin\sin xf(x)=sinsinx
Evaluatef(0) in f(x)=sinx+1.f(0)\ in\ f(x)=\sin x+1.f(0) in f(x)=sinx+1.
Evaluate f(π4)inf(x)=sin2x.f(\frac{\pi}{4})\inf(x)=\sin2x.f(4π)inf(x)=sin2x.
It is done.