1 / 10
00
Evaluate h(π6)h\left(\frac{\pi}{6}\right)h(6π) in h(x)=xh(x)=xh(x)=x
0
1
12\frac{1}{2}21
Evaluate f(π3)f\left(\frac{\pi}{3}\right)f(3π) in f(x)=2sinsinxf(x)=2\sin\sin xf(x)=2sinsinx
32\frac{\sqrt{3}}{2}23
3\sqrt{3}3
Evaluate f(π3)f\left(\frac{\pi}{3}\right)f(3π) in f(x)=sinsinxf(x)=\sin\sin xf(x)=sinsinx
Evaluate g(0)g\left(0\right)g(0) in g(x)=sinsin2xg(x)=\sin\sin2xg(x)=sinsin2x
3
-9
Evaluate g(π2)g\left(\frac{\pi}{2}\right)g(2π) in g(x)=sinsin2xg(x)=\sin\sin2xg(x)=sinsin2x
Evaluatef(0) in f(x)=sinx+1.f(0)\ in\ f(x)=\sin x+1.f(0) in f(x)=sinx+1.
Evaluate f(π2) in f(x)=sinx−1.f(\frac{\pi}{2})\ in\ f(x)=\sin x-1.f(2π) in f(x)=sinx−1.
Evaluate f(3π2)f\left(\frac{3\pi}{2}\right)f(23π) in f(x)=sinsinxf(x)=\sin\sin xf(x)=sinsinx
-1
Evaluate f(π2) in f(x)=sinx.f(\frac{\pi}{2})\ in\ f(x)=\sin x.f(2π) in f(x)=sinx.
Evaluatef(−π2) in f(x)=sinx+1.f(-\frac{\pi}{2})\ in\ f(x)=\sin x+1.f(−2π) in f(x)=sinx+1.
It is done.