1 / 10
00
Determine the rational function from table:
f(x)=12+x5+xf\left(x\right)=\frac{12+x}{5+x}f(x)=5+x12+x
f(x)=x25+xf\left(x\right)=\frac{x}{25+x}f(x)=25+xx
f(x)=12+x25+xf\left(x\right)=\frac{12+x}{25+x}f(x)=25+x12+x
Determine the rational function from this table:
s(x)=5xs(x)=\frac{5}{x}s(x)=x5
s(x)=10xs(x)=\frac{10}{x}s(x)=x10
s(x)=50xs(x)=\frac{50}{x}s(x)=x50
Identify the rational function from this table
f(x)=1x2f\left(x\right)=\frac{1}{x^2}f(x)=x21
f(x)=−1xf(x)=\frac{-1}{x}f(x)=x−1
f(x)=1xf\left(x\right)=\frac{1}{x}f(x)=x1
What is the rational function for this table ?
s(x)=2xs(x)=\frac{2}{x}s(x)=x2
s(x)=20xs(x)=\frac{20}{x}s(x)=x20
f(x)=−1x+1f\left(x\right)=\frac{-1}{x+1}f(x)=x+1−1
f(x)=−1x+1−1f(x)=\frac{-1}{x+1}-1f(x)=x+1−1−1
f(x)=1x+1−2f(x)=\frac{1}{x+1}-2f(x)=x+11−2
Identify the rational function table from this table:
f(x)=1x+1f\left(x\right)=\frac{1}{x+1}f(x)=x+11
f(x)=x−1x+1f\left(x\right)=\frac{x-1}{x+1}f(x)=x+1x−1
Identify the rational function from this table :
f(x)=3x−1xf\left(x\right)=\frac{3x-1}{x}f(x)=x3x−1
f(x)=x2−3x−1xf\left(x\right)=\frac{x^2-3x-1}{x}f(x)=xx2−3x−1
f(x)=−1xf\left(x\right)=\frac{-1}{x}f(x)=x−1
Determine the rational function from this table :
f(x)=1x−1f\left(x\right)=\frac{1}{x-1}f(x)=x−11
What is the Rational function from this table :
f(x)=2x−5f\left(x\right)=\frac{2}{x-5}f(x)=x−52
f(x)=1x−5f\left(x\right)=\frac{1}{x-5}f(x)=x−51
f(x)=2x−1f\left(x\right)=\frac{2}{x-1}f(x)=x−12
Determine rational function from this table:
f(x)=x+1x−3f\left(x\right)=\frac{x+1}{x-3}f(x)=x−3x+1
f(x)=1x−4f\left(x\right)=\frac{1}{x-4}f(x)=x−41
f(x)=x+1x−4f\left(x\right)=\frac{x+1}{x-4}f(x)=x−4x+1
It is done.