1 / 10
00
What is the restriction of the domain of the rational function f(x)=x+3x−10?\ \ f(x)=\frac{x+3}{x-10}? f(x)=x−10x+3?
What is the restriction of the range of the rational function f(x)=1(x+1) ?f\left(x\right)=\frac{1}{\left(x+1\right)}\ ?f(x)=(x+1)1 ?
What is the range of this Y=x2−3x−4x+1Y=\frac{x^2-3x-4}{x+1}Y=x+1x2−3x−4 for x≠−1x\ne-1x=−1 .
(−∞,−5)U(−5,∞)(-∞,-5)U(-5,∞)(−∞,−5)U(−5,∞)
(−∞,−5)U(5,∞)(-∞,-5)U(5,∞)(−∞,−5)U(5,∞)
(−∞,5)U(−5,∞)(-∞,5)U(-5,∞)(−∞,5)U(−5,∞)
What is the range of this function f(x)=2x+34x+5f\left(x\right)=\frac{2x+3}{4x+5}f(x)=4x+52x+3 ?
R−{−54}R-\left\{-\frac{5}{4}\right\}R−{−45}
R−{−14}R-\left\{-\frac{1}{4}\right\}R−{−41}
R−{−53}R-\left\{-\frac{5}{3}\right\}R−{−35}
Complete:
The set of values that the function assumes is called the___________.
Range of a function
Domain of a function
None of these
. What is the range of this function f(x)=−1x−5f\left(x\right)=-\frac{1}{x-5}f(x)=−x−51 ?
R−0R-0R−0
R−2R-2R−2
R−5R-5R−5
The range of g(x)=1x2g\left(x\right)=\frac{1}{x^2}g(x)=x21 is ___________.
All positive real number
All negative real number
What is the restriction of the domain of the rational function f(x)=1x2−4 ?\ \ f(x)=\frac{1}{x^2-4}\ ? f(x)=x2−41 ?
Determine the range of this function
f(x)=2x+3f\left(x\right)=\frac{2}{x+3}f(x)=x+32
R−3R-3R−3
R−1R-1R−1
What is the restriction of the range of the rational function f(x)=1x−1?\ f(x)=\frac{1}{x-1}? f(x)=x−11?
It is done.