1 / 10
00
Write equation in standard form from graph:
g(x)=coscos2xg(x)=\cos\cos2xg(x)=coscos2x
f(x)=coscos x2f(x)=\cos\cos\ \frac{x}{2}f(x)=coscos 2x
Write equation in standard form from list of points:
((0,1),(π12,32),(π8,12)\left((0,1),(\frac{\pi}{12},\frac{\sqrt{3}}{2}\right),\left(\frac{\pi}{8},\frac{1}{\sqrt{2}}\right)((0,1),(12π,23),(8π,21)
g(x)=sinsin2xg(x)=\sin\sin2xg(x)=sinsin2x
h(x)=coscos2xh(x)=\cos\cos2xh(x)=coscos2x
(0,1),(π6,32),(π4,12)(0,1),\left(\frac{\pi}{6},\frac{\sqrt{3}}{2}\right),\left(\frac{\pi}{4},\frac{1}{\sqrt{2}}\right)(0,1),(6π,23),(4π,21)
g(x)=sinsinxg(x)=\sin\sin xg(x)=sinsinx
h(x)=coscosxh(x)=\cos\cos xh(x)=coscosx
(0,1),(π3,32),(π2,12)(0,1),\left(\frac{\pi}{3},\frac{\sqrt{3}}{2}\right),\left(\frac{\pi}{2},\frac{1}{\sqrt{2}}\right)(0,1),(3π,23),(2π,21)
T(x)=Sinx2T(x)=Sin\frac{x}{2}T(x)=Sin2x
h(x)=Cosx2h(x)=Cos\frac{x}{2}h(x)=Cos2x
Write equation in standard form from table:
f(x)=coscosxf(x)=\cos\cos xf(x)=coscosx
(0,1),(π6,32),(π3,12)(0,1),\left(\frac{\pi}{6},\frac{\sqrt{3}}{2}\right),\left(\frac{\pi}{3},\frac{1}{2}\right)(0,1),(6π,23),(3π,21)
T(x)=coscosxT(x)=\cos\cos xT(x)=coscosx
h(x)=sinsinxh(x)=\sin\sin xh(x)=sinsinx
g(x)=coscosx2g(x)=\cos\cos\frac{x}{2}g(x)=coscos2x
f(x)=coscosx2f(x)=\cos\cos\frac{x}{2}f(x)=coscos2x
f(x)=cosxf(x)=\cos xf(x)=cosx
T(x)=coscos2xT(x)=\cos\cos2xT(x)=coscos2x
It is done.