1 / 10
00
Determine the linear approximation of f(x)=1+xx2f\left(x\right)=\frac{1+x}{x^2}f(x)=x21+x at a=−1a=-1a=−1 .
L(x)=x+1L\left(x\right)=x+1L(x)=x+1
L(x)=x−1L\left(x\right)=x-1L(x)=x−1
L(x)=xL\left(x\right)=xL(x)=x
Determine the linear approximation of f(x)=1x+2f\left(x\right)=\frac{1}{x}+2f(x)=x1+2 at a=−1a=-1a=−1 .
L(x)=−xL\left(x\right)=-xL(x)=−x
L(x)=10L\left(x\right)=10L(x)=10
Determine the linear approximation of at a=−2a=-2a=−2 .
L(x)=12x+16L\left(x\right)=12x+16L(x)=12x+16
L(x)=12xL\left(x\right)=12xL(x)=12x
L(x)=16L\left(x\right)=16L(x)=16
Determine the linear approximation of
L(x)=−10L\left(x\right)=-10L(x)=−10
L(x)=12x−10L\left(x\right)=12x-10L(x)=12x−10
L(x)=−2L\left(x\right)=-2L(x)=−2
L(x)=−3L\left(x\right)=-3L(x)=−3
L(x)=−1L\left(x\right)=-1L(x)=−1
L(x)=−x−2L\left(x\right)=-x-2L(x)=−x−2
L(x)=15x−4L\left(x\right)=15x-4L(x)=15x−4
L(x)=15xL\left(x\right)=15xL(x)=15x
L(x)=−4L\left(x\right)=-4L(x)=−4
Determine the linear approximation of at a=1.
L(x)=4xL\left(x\right)=4xL(x)=4x
L(x)=4x−5L\left(x\right)=4x-5L(x)=4x−5
L(x)=−5L\left(x\right)=-5L(x)=−5
Determine the linear approximation of at a=0a=0a=0 .
L(x)=−4x−2L\left(x\right)=-4x-2L(x)=−4x−2
L(x)=2L\left(x\right)=2L(x)=2
It is done.