1 / 10
00
Consider the function n(x)=x2+3x−2x−1n\left(x\right)=\frac{x^2+3x-2}{x-1}n(x)=x−1x2+3x−2 . Determine the vertical asymptote(s) of the curve.
x=1x=1x=1
x=0x=0x=0
For the function g(x)=3x3−2x2+5x2−4g\left(x\right)=\frac{3x^3-2x^2+5}{x^2-4}g(x)=x2−43x3−2x2+5 , find the horizontal asymptote(s) of the curve.
y=3y=3y=3
y=0
y=9y=9y=9
For the function j(x)=5x3+2x2−3x3+2x−1j\left(x\right)=\frac{5x^3+2x^2-3}{x^3+2x-1}j(x)=x3+2x−15x3+2x2−3 , find the vertical asymptote(s) of the curve.
x=−1x=-1x=−1
x=−2x=-2x=−2
For the function m(x)=3x3+4x2−2x3−2x+1m\left(x\right)=\frac{3x^3+4x^2-2}{x^3-2x+1}m(x)=x3−2x+13x3+4x2−2 , find the oblique/slant asymptote(s) of the curve.
y=3x2+4x−2y=3x^2+4x-2y=3x2+4x−2
y=0y=0y=0
For the function r(x)=5x4+2x2−1x3+2x−1r\left(x\right)=\frac{5x^4+2x^2-1}{x^3+2x-1}r(x)=x3+2x−15x4+2x2−1 find the vertical asymptote(s) of the curve.
Consider the function q(x)=4x2−6x+3x+2q\left(x\right)=\frac{4x^2-6x+3}{x+2}q(x)=x+24x2−6x+3 . Determine the oblique/slant asymptote(s) of the curve.
y=4x−14y=4x-14y=4x−14
Consider the function h(x)=4x2−6x+2x+1h\left(x\right)=\frac{4x^2-6x+2}{x+1}h(x)=x+14x2−6x+2 . Determine the oblique/slant asymptote(s) of the curve.
y=4x−10y=4x-10y=4x−10
For the function p(x)=2x5−5x2+4x2−4p\left(x\right)=\frac{2x^5-5x^2+4}{x^2-4}p(x)=x2−42x5−5x2+4 , find the horizontal asymptote(s) of the curve.
y=2xy=2xy=2x
Consider the function k(x)=2x4−3x2+1x2−1k\left(x\right)=\frac{2x^4-3x^2+1}{x^2-1}k(x)=x2−12x4−3x2+1 . Determine the horizontal asymptote(s) of the curve.
y=2x2y=2x^2y=2x2
Consider the function s(x)=3x4−2x2+5x2−1s\left(x\right)=\frac{3x^4-2x^2+5}{x^2-1}s(x)=x2−13x4−2x2+5 . Determine the horizontal asymptote(s) of the curve.
y=3x2y=3x^2y=3x2
It is done.