1 / 10
00
Which of the following functions shows inverse variation relationship between f(x)f\left(x\right)f(x) and xxx ?
f(x)=2x+1f\left(x\right)=2x+1f(x)=2x+1
f(x)=45xf\left(x\right)=\frac{4}{5}xf(x)=54x
f(x)=2xf\left(x\right)=2xf(x)=2x
f(x)=12xf\left(x\right)=\frac{1}{2x}f(x)=2x1
f(x)=5x+3f\left(x\right)=5x+3f(x)=5x+3
f(x)=32x−5f\left(x\right)=\frac{3}{2x}-5f(x)=2x3−5
f(x)=x−3f\left(x\right)=x-3f(x)=x−3
f(x)=12x−3f\left(x\right)=\frac{1}{2x}_{ }-3f(x)=2x1−3
f(x)=5x−3f\left(x\right)=5x-3f(x)=5x−3
f(x)=3x2f\left(x\right)=\frac{3x}{2}f(x)=23x
f(x)=x+4f\left(x\right)=x+4f(x)=x+4
f(x)=5x3−1f\left(x\right)=\frac{5x}{3}-1f(x)=35x−1
f(x)=2x−3f\left(x\right)=2x-3f(x)=2x−3
f(x)=32x+5f\left(x\right)=\frac{3}{2x}+5f(x)=2x3+5
f(x)=3xf\left(x\right)=3xf(x)=3x
f(x)=13xf\left(x\right)=\frac{1}{3x}f(x)=3x1
f(x)=12x+1f\left(x\right)=\frac{1}{2x}+1f(x)=2x1+1
f(x)=x+6f\left(x\right)=x+6f(x)=x+6
f(x)=32x−1f\left(x\right)=\frac{3}{2}x-1f(x)=23x−1
It is done.