1 / 10
00
Determine the linear approximation of at a=1a=1a=1 .
L(x)=2xL\left(x\right)=2xL(x)=2x
L(x)=2x+1L\left(x\right)=2x+1L(x)=2x+1
L(x)=1L\left(x\right)=1L(x)=1
L(x)=L\left(x\right)=L(x)= 4
L(x)=6L\left(x\right)=6L(x)=6
L(x)=8L\left(x\right)=8L(x)=8
L(x)=3xL\left(x\right)=3xL(x)=3x
L(x)=4x−3L\left(x\right)=4x-3L(x)=4x−3
L(x)=4x+3L\left(x\right)=4x+3L(x)=4x+3
L(x)=7x+1L\left(x\right)=7x+1L(x)=7x+1
L(x)=−7x−1L\left(x\right)=-7x-1L(x)=−7x−1
L(x)=0L\left(x\right)=0L(x)=0
L(x)=−4x−3L\left(x\right)=-4x-3L(x)=−4x−3
L(x)=−4xL\left(x\right)=-4xL(x)=−4x
L(x)=−3L\left(x\right)=-3L(x)=−3
Determine the linear approximation of f(x)=x3+x2+xf\left(x\right)=x^3+x^2+xf(x)=x3+x2+x at a=0a=0a=0 .
0
2
L(x)=xL\left(x\right)=xL(x)=x
Determine the linear approximation of f(x)=x3+2xf\left(x\right)=x^3+2xf(x)=x3+2x at a=0a=0a=0 .
L(x)=2L\left(x\right)=2L(x)=2
Determine the linear approximation of f(x)=x3+2xf\left(x\right)=x^3+2xf(x)=x3+2x at a=2a=2a=2 .
L(x)=14x−16L\left(x\right)=14x-16L(x)=14x−16
L(x)=14xL\left(x\right)=14xL(x)=14x
L(x)=14x+16L\left(x\right)=14x+16L(x)=14x+16
L(x)=6x−3L\left(x\right)=6x-3L(x)=6x−3
L(x)=6xL\left(x\right)=6xL(x)=6x
L(x)=3L\left(x\right)=3L(x)=3
Determine the linear approximation of at a=0a=0a=0 .
L(x)=7L\left(x\right)=7L(x)=7
It is done.