1 / 10
00
L(x)=−12−34xL\left(x\right)=-\frac{1}{2}-\frac{3}{4}xL(x)=−21−43x
L(x)=−12+34xL\left(x\right)=-\frac{1}{2}+\frac{3}{4}xL(x)=−21+43x
L(x)=xL\left(x\right)=xL(x)=x
L(x)=3x+1L\left(x\right)=3x+1L(x)=3x+1
L(x)=−3x+1L\left(x\right)=-3x+1L(x)=−3x+1
L(x)=3xL\left(x\right)=3xL(x)=3x
L(x)=8x+5L\left(x\right)=8x+5L(x)=8x+5
L(x)=5L\left(x\right)=5L(x)=5
L(x)=8x−3L\left(x\right)=8x-3L(x)=8x−3
L(x)=−xL\left(x\right)=-xL(x)=−x
L(x)=−x−2L\left(x\right)=-x-2L(x)=−x−2
L(x)=−2L\left(x\right)=-2L(x)=−2
L(x)=−14−14xL\left(x\right)=-\frac{1}{4}-\frac{1}{4}xL(x)=−41−41x
L(x)=14−14L\left(x\right)=\frac{1}{4}-\frac{1}{4}L(x)=41−41 x
L(x)=14xL\left(x\right)=\frac{1}{4}xL(x)=41x
L(x)=13+15xL\left(x\right)=\frac{1}{3}+\frac{1}{5}xL(x)=31+51x
L(x)=13−15xL\left(x\right)=\frac{1}{3}-\frac{1}{5}xL(x)=31−51x
L(x)=−13−15xL\left(x\right)=-\frac{1}{3}-\frac{1}{5}xL(x)=−31−51x
L(x)=−12xL\left(x\right)=-\frac{1}{2}xL(x)=−21x
L(x)=−32+12xL\left(x\right)=-\frac{3}{2}+\frac{1}{2}xL(x)=−23+21x
L(x)=−12−32xL\left(x\right)=-\frac{1}{2}-\frac{3}{2}xL(x)=−21−23x
L(x)=−1−23xL\left(x\right)=-1-\frac{2}{3}xL(x)=−1−32x
L(x)=1L\left(x\right)=1L(x)=1
L(x)=−14x−1L\left(x\right)=-\frac{1}{4}x-1L(x)=−41x−1
L(x)=14L\left(x\right)=\frac{1}{4}L(x)=41
L(x)=12−xL\left(x\right)=\frac{1}{2}-xL(x)=21−x
L(x)=−12−xL\left(x\right)=-\frac{1}{2}-xL(x)=−21−x
It is done.