1 / 10
00
g′(x)=3cos(3x−1)g'\left(x\right)=3\cos\left(3x-1\right)g′(x)=3cos(3x−1)
g′(x)=3cos(3x+1)g'\left(x\right)=3\cos\left(3x+1\right)g′(x)=3cos(3x+1)
g′(x)=cos(3x+1)g'\left(x\right)=\cos\left(3x+1\right)g′(x)=cos(3x+1)
44x+5\frac{4}{4x+5}4x+54
44x−5\frac{4}{4x-5}4x−54
4x−5\frac{4}{x-5}x−54
s′(x)=525x−2s'\left(x\right)=\frac{5}{2\sqrt{5x-2}}s′(x)=25x−25
s′(x)=525x+2s'\left(x\right)=\frac{5}{2\sqrt{5x+2}}s′(x)=25x+25
s′(x)=55x−2s'\left(x\right)=\frac{5}{\sqrt{5x-2}}s′(x)=5x−25
6(2x+3)26\left(2x+3\right)^26(2x+3)2
6(2x+3)36\left(2x+3\right)^{^3}6(2x+3)3
6(2x+3)46\left(2x+3\right)^{^4}6(2x+3)4
u′(x)=22x−3u'\left(x\right)=\frac{2}{2x-3}u′(x)=2x−32
u′(x)=22x+3u'\left(x\right)=\frac{2}{2x+3}u′(x)=2x+32
u′(x)=2x−3u'\left(x\right)=\frac{2}{x-3}u′(x)=x−32
x-2)v′(x)=4cos(4x−2)v'\left(x\right)=4\cos\left(4x-2\right)v′(x)=4cos(4x−2)
v′(x)=4cos(4x+2)v'\left(x\right)=4\cos\left(4x+2\right)v′(x)=4cos(4x+2)
v′(x)=cos(4x+2)v'\left(x\right)=\cos\left(4x+2\right)v′(x)=cos(4x+2)
r′(x)=sin(3x−1)r'\left(x\right)=\sin\left(3x-1\right)r′(x)=sin(3x−1)
r′(x)=sin(3x+1)r'\left(x\right)=\sin\left(3x+1\right)r′(x)=sin(3x+1)
r′(x)=sin(3x)r'\left(x\right)=\sin\left(3x\right)r′(x)=sin(3x)
w′(x)=6(3x−1)w'\left(x\right)=6\left(3x-1\right)w′(x)=6(3x−1)
w′(x)=(3x−1)w'\left(x\right)=\left(3x-1\right)w′(x)=(3x−1)
w′(x)=(3x)w'\left(x\right)=\left(3x\right)w′(x)=(3x)
m′(x)=12x−1m'\left(x\right)=\frac{1}{\sqrt{2x-1}}m′(x)=2x−11
m′(x)=12x+1m'\left(x\right)=\frac{1}{\sqrt{2x+1}}m′(x)=2x+11
m′(x)=22x+1m'\left(x\right)=\frac{2}{\sqrt{2x+1}}m′(x)=2x+12
t′(x)=2e(−2x+1)t'\left(x\right)=2e^{\left(-2x+1\right)}t′(x)=2e(−2x+1)
t′(x)=2e(−2x−1)t'\left(x\right)=2e^{\left(-2x-1\right)}t′(x)=2e(−2x−1)
t′(x)=e(−2x−1)t'\left(x\right)=e^{\left(-2x-1\right)}t′(x)=e(−2x−1)
It is done.