1 / 10
00
s′(x)=ex⋅sinx+x⋅ex⋅cosx−x⋅exsinxs'\left(x\right)=e^x\cdot\sin x+x\cdot e^x\cdot\cos x-x\cdot e^x\sin xs′(x)=ex⋅sinx+x⋅ex⋅cosx−x⋅exsinx
s′(x)=ex⋅sinx−x⋅ex⋅cosx−x⋅exsinxs'\left(x\right)=e^x\cdot\sin x-x\cdot e^x\cdot\cos x-x\cdot e^x\sin xs′(x)=ex⋅sinx−x⋅ex⋅cosx−x⋅exsinx
s′(x)=ex⋅sinx+x⋅ex⋅cosx+x⋅exsinxs'\left(x\right)=e^x\cdot\sin x+x\cdot e^x\cdot\cos x+x\cdot e^x\sin xs′(x)=ex⋅sinx+x⋅ex⋅cosx+x⋅exsinx
w′(x)=cosx⋅lnx−x⋅sinx⋅lnx+x⋅cosx⋅1xw'\left(x\right)=\cos x\cdot\ln x-x\cdot\sin x\cdot\ln x+x\cdot\cos x\cdot\frac{1}{x}w′(x)=cosx⋅lnx−x⋅sinx⋅lnx+x⋅cosx⋅x1
w′(x)=cosx⋅lnx−x⋅sinx⋅lnx−x⋅cosx⋅1xw'\left(x\right)=\cos x\cdot\ln x-x\cdot\sin x\cdot\ln x-x\cdot\cos x\cdot\frac{1}{x}w′(x)=cosx⋅lnx−x⋅sinx⋅lnx−x⋅cosx⋅x1
w′(x)=cosx⋅lnx+x⋅sinx⋅lnx+x⋅cosx⋅1xw'\left(x\right)=\cos x\cdot\ln x+x\cdot\sin x\cdot\ln x+x\cdot\cos x\cdot\frac{1}{x}w′(x)=cosx⋅lnx+x⋅sinx⋅lnx+x⋅cosx⋅x1
v′(x)=cosx⋅ex+sinx⋅ev'\left(x\right)=\cos x\cdot e^x+\sin x\cdot e^{ }v′(x)=cosx⋅ex+sinx⋅e
v′(x)=cosx⋅ex−sinx⋅exv'\left(x\right)=\cos x\cdot e^x-\sin x\cdot e^xv′(x)=cosx⋅ex−sinx⋅ex
v′(x)=cosx⋅ex+sinx⋅exv'\left(x\right)=\cos x\cdot e^x+\sin x\cdot e^xv′(x)=cosx⋅ex+sinx⋅ex
q′(x)=−1x2⋅ex+1x⋅exq'\left(x\right)=-\frac{1}{x^2}\cdot e^x+\frac{1}{x}\cdot e^xq′(x)=−x21⋅ex+x1⋅ex
q′(x)=−1x2⋅ex−1x⋅exq'\left(x\right)=-\frac{1}{x^2}\cdot e^x-\frac{1}{x}\cdot e^xq′(x)=−x21⋅ex−x1⋅ex
q′(x)=−1x2⋅ex+1x⋅eq'\left(x\right)=-\frac{1}{x^2}\cdot e^x+\frac{1}{x}\cdot e^{ }q′(x)=−x21⋅ex+x1⋅e
t′(x)=1x⋅e−x−lnx⋅e−xt'\left(x\right)=\frac{1}{x}\cdot e^{-x}-\ln x\cdot e^{-x}t′(x)=x1⋅e−x−lnx⋅e−x
t′(x)=1x⋅e−x+lnx⋅e−xt'\left(x\right)=\frac{1}{x}\cdot e^{-x}+\ln x\cdot e^{-x}t′(x)=x1⋅e−x+lnx⋅e−x
t′(x)=1x⋅e−x−lnx⋅ext'\left(x\right)=\frac{1}{x}\cdot e^{-x}-\ln x\cdot e^xt′(x)=x1⋅e−x−lnx⋅ex
u′(x)=12x⋅tanx+x⋅sec2xu'\left(x\right)=\frac{1}{2\sqrt{x}}\cdot\tan x+\sqrt{x}\cdot\sec^2xu′(x)=2x1⋅tanx+x⋅sec2x
u′(x)=12x⋅tanx+x⋅sec2xu'\left(x\right)=12\sqrt{x}\cdot\tan x+\sqrt{x}\cdot\sec^2xu′(x)=12x⋅tanx+x⋅sec2x
u′(x)=12x⋅tanx−x⋅sec2xu'\left(x\right)=\frac{1}{2\sqrt{x}}\cdot\tan x-\sqrt{x}\cdot\sec^2xu′(x)=2x1⋅tanx−x⋅sec2x
m′(x)=3x2.lnx−x2.1xm'\left(x\right)=3x^2.\ln x-x^2.\frac{1}{x}m′(x)=3x2.lnx−x2.x1
m′(x)=3x2.lnx+x2.1xm'\left(x\right)=3x^2.\ln x+x^2.\frac{1}{x}m′(x)=3x2.lnx+x2.x1
m′(x)=3x2.lnx+1xm'\left(x\right)=3x^2.\ln x+\frac{1}{x}m′(x)=3x2.lnx+x1
If p(x)=x⋅cosxp\left(x\right)=\sqrt{x}\cdot\cos xp(x)=x⋅cosx , find p′(x)p'\left(x\right)p′(x) .
p′(x)=12x⋅cosx+sinx⋅xp'\left(x\right)=\frac{1}{2\sqrt{x}}\cdot\cos x+\sin x\cdot\sqrt{x}p′(x)=2x1⋅cosx+sinx⋅x
p′(x)=12x⋅cosx−sinxp'\left(x\right)=\frac{1}{2\sqrt{x}}\cdot\cos x-\sin xp′(x)=2x1⋅cosx−sinx
p′(x)=12x⋅cosx−sinx⋅xp'\left(x\right)=\frac{1}{2\sqrt{x}}\cdot\cos x-\sin x\cdot\sqrt{x}p′(x)=2x1⋅cosx−sinx⋅x
r′(x)=sinx⋅lnx−cosxxr'\left(x\right)=\sin x\cdot\ln x-\frac{\cos x}{x}r′(x)=sinx⋅lnx−xcosx
r′(x)=sinx⋅lnx+cosxxr'\left(x\right)=\sin x\cdot\ln x+\frac{\cos x}{x}r′(x)=sinx⋅lnx+xcosx
r′(x)=sinx⋅lnx+cosxr'\left(x\right)=\sin x\cdot\ln x+\cos xr′(x)=sinx⋅lnx+cosx
h′(x)=ex⋅sinx+ex⋅cosxh'\left(x\right)=e^x\cdot\sin x+e^x\cdot\cos xh′(x)=ex⋅sinx+ex⋅cosx .
h′(x)=ex⋅sinx−ex⋅cosxh'\left(x\right)=e^x\cdot\sin x-e^x\cdot\cos xh′(x)=ex⋅sinx−ex⋅cosx
h′(x)=ex⋅sinx+cosxh'\left(x\right)=e^x\cdot\sin x+\cos xh′(x)=ex⋅sinx+cosx
It is done.