1 / 10
00
q′(x)=sec2xcosx−sinxtanxcos2xq'\left(x\right)=\frac{\sec^2x\cos x-\sin x\tan x}{\cos^2x}q′(x)=cos2xsec2xcosx−sinxtanx
q′(x)=sec2xcosx+sinxtanxcos2xq'\left(x\right)=\frac{\sec^2x\cos x+\sin x\tan x}{\cos^2x}q′(x)=cos2xsec2xcosx+sinxtanx
q′(x)=sec2xcosx+sinxtanxcosxq'\left(x\right)=\frac{\sec^2x\cos x+\sin x\tan x}{\cos^{ }x}q′(x)=cosxsec2xcosx+sinxtanx
m′(x)=sinx⋅x−cosxxm'\left(x\right)=\frac{\sin x\cdot x-\cos x}{x^{ }}m′(x)=xsinx⋅x−cosx
m′(x)=sinx⋅x−cosxx2m'\left(x\right)=\frac{\sin x\cdot x-\cos x}{x^2}m′(x)=x2sinx⋅x−cosx
m′(x)=sinx⋅x+cosxx2m'\left(x\right)=\frac{\sin x\cdot x+\cos x}{x^2}m′(x)=x2sinx⋅x+cosx
r′(x)=21−x2+2x2x21−x21−xr'\left(x\right)=\frac{2\sqrt{1-x^2}+2x\frac{2x}{2\sqrt{1-x^2}}}{1-x^{ }}r′(x)=1−x21−x2+2x21−x22x
r′(x)=2(1−x2)−2x⋅2x21−x21−x2r'\left(x\right)=\frac{2\left(\sqrt{1-x^2}\right)-2x\cdot\frac{2x}{2\sqrt{1-x^2}}}{1-x^2}r′(x)=1−x22(1−x2)−2x⋅21−x22x
r′(x)=2(1−x2)+2x⋅2x21−x21−x2r'\left(x\right)=\frac{2\left(\sqrt{1-x^2}\right)+2x\cdot\frac{2x}{2\sqrt{1-x^2}}}{1-x^2}r′(x)=1−x22(1−x2)+2x⋅21−x22x
If p(x)=2xx2+1p\left(x\right)=\frac{2x}{x^2+1}p(x)=x2+12x , find p′(x)p'\left(x\right)p′(x) .
p′(x)=−2x2−1(x2−1)2p'\left(x\right)=\frac{-2x^2-1}{\left(x^2-1\right)^2}p′(x)=(x2−1)2−2x2−1
p′(x)=−2x2+1(x2+1)2p'\left(x\right)=\frac{-2x^2+1}{\left(x^2+1\right)^2}p′(x)=(x2+1)2−2x2+1
p′(x)=−2x2+1(x2+1)p'\left(x\right)=\frac{-2x^2+1}{\left(x^2+1\right)^{ }}p′(x)=(x2+1)−2x2+1
q′(x)=1−lnxx2q'\left(x\right)=\frac{1-\ln x}{x^2}q′(x)=x21−lnx
q′(x)=1−lnx2q'\left(x\right)=\frac{1-\ln x}{2}q′(x)=21−lnx
q′(x)=1+lnxx2q'\left(x\right)=\frac{1+\ln x}{x^2}q′(x)=x21+lnx
Determine the derivative of .h(x)=x2exh\left(x\right)=\frac{x^2}{e^x}h(x)=exx2 .
h′(x)=2xex−x2ex(ex)2h'\left(x\right)=\frac{2xe^x-x^2e^x}{\left(e^x\right)^2}h′(x)=(ex)22xex−x2ex
h′(x)=2xex+x2ex(ex)2h'\left(x\right)=\frac{2xe^x+x^2e^x}{\left(e^x\right)^2}h′(x)=(ex)22xex+x2ex
h′(x)=2xex−x2ex(ex)h'\left(x\right)=\frac{2xe^x-x^2e^x}{\left(e^x\right)^{ }}h′(x)=(ex)2xex−x2ex
Determine the derivative of h(x)=xexh\left(x\right)=\frac{\sqrt{x}}{e^x}h(x)=exx .
h′(x)=1−2x2xexh'\left(x\right)=\frac{1-2x}{2\sqrt{x}e^x}h′(x)=2xex1−2x
h′(x)=12xexh'\left(x\right)=\frac{1}{2\sqrt{x}e^x}h′(x)=2xex1
h′(x)=1+2x2xexh'\left(x\right)=\frac{1+2x}{2\sqrt{x}e^x}h′(x)=2xex1+2x
p′(x)=exx−lnx⋅ex(lnx)2p'\left(x\right)=\frac{\frac{e^x}{x}-\ln x\cdot e^x}{\left(\ln x\right)^2}p′(x)=(lnx)2xex−lnx⋅ex
p′(x)=exx+lnx⋅ex(lnx)2p'\left(x\right)=\frac{\frac{e^x}{x}+\ln x\cdot e^x}{\left(\ln x\right)^2}p′(x)=(lnx)2xex+lnx⋅ex
p′(x)=exx−lnx⋅ex(lnx)p'\left(x\right)=\frac{\frac{e^x}{x}-\ln x\cdot e^x}{\left(\ln x\right)^{ }}p′(x)=(lnx)xex−lnx⋅ex
m′(x)=ex⋅sinx+excosxcos2xm'\left(x\right)=\frac{e^x\cdot\sin x+e^x\cos x}{\cos^2x}m′(x)=cos2xex⋅sinx+excosx
m′(x)=ex⋅sinx−excosxcos2xm'\left(x\right)=\frac{e^x\cdot\sin x-e^x\cos x}{\cos^2x}m′(x)=cos2xex⋅sinx−excosx
m′(x)=ex⋅sinx−excosxcosxm'\left(x\right)=\frac{e^x\cdot\sin x-e^x\cos x}{\cos^{ }x}m′(x)=cosxex⋅sinx−excosx
It is done.