1 / 10
00
True or False: limx→aC=C\lim_{x\to a}C=Climx→aC=C assuming that the limit exists.
True
False
True or False: The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
True or False: The limit of a function exists if and only if the left-hand limit is greater than to the right-hand limit ?
True or False limx→a[(f+g)(x)]=limx→af(x) + limx→ag(x) assuming that these limits exist.
True or False : limx→a[(f-g)(x)]=limx→af(x) - limx→ag(x) assuming that these limits exist.
True or False: limx→a[c.f(x)]=c.limx→af(x)\lim_{x\to a}\left[c.f\left(x\right)\right]=c.\lim_{x\to a}f\left(x\right)limx→a[c.f(x)]=c.limx→af(x) assuming that the limits exist and c is a constant
True or False: The limits of functions sometimes do not exist
True or False: assuming that these limits exist.
True or False: limx→aC=a\lim_{x\to a}C=alimx→aC=a assuming that the limit exists
It is done.