Questions

1 / 10

Time
Score

00

Understanding The Limits Of Functions

True or False: limxaC=C\lim_{x\to a}C=C assuming that the limit exists.

True or False: The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.

True or False: The limit of a function exists if and only if the left-hand limit is greater than to the right-hand limit ?

True or False limxa​[(f+g)(x)]=limx→af(x) + limxag(x) assuming that these limits exist. 

True or False : limxa​[(f-g)(x)]=limx→a​f(x) - limxag(x) assuming that these limits exist.

True or False: limxa[c.f(x)]=c.limxaf(x)\lim_{x\to a}\left[c.f\left(x\right)\right]=c.\lim_{x\to a}f\left(x\right) assuming that the limits exist and c is a constant

True or False: The limits of functions sometimes do not exist

True or False: assuming that these limits exist.

True or False: limxaC=a\lim_{x\to a}C=a assuming that the limit exists

True or False: limxa[(f.g)(x)]=limxaf(x).limxag(x)\lim_{x\to a}\left[\left(f.g\right)\left(x\right)\right]=\lim_{x\to a}f\left(x\right).\lim_{x\to a}g\left(x\right) assuming that these limits exist.