1 / 10
00
Given focus F(0, 1) and directrix y = -5, find the equation of the parabola.
(y−1)2=24(x−0)(y-1)^2=24(x-0)(y−1)2=24(x−0)
(y−1)2=24x(y-1)^2=24x(y−1)2=24x
Given the focus at F(1, -2) and the directrix y = 4, write the equation of the parabola.
(y+2)2=−8(x−1)(y+2)^2=-8(x-1)(y+2)2=−8(x−1)
(y+3)2=−8(x−1)(y+3)^2=-8(x-1)(y+3)2=−8(x−1)
Find the equation of a parabola with focus F(0, -5) and directrix y = 1.
(y+5)2=−4(x−0)(y+5)^2=-4(x-0)(y+5)2=−4(x−0)
(y+5)2=4(x−0)(y+5)^2=4(x-0)(y+5)2=4(x−0)
Given the focus at F(3, 2) and the directrix y = -4, determine the equation of the parabola..
(y−2)2=8(x−3)(y-2)^2=8(x-3)(y−2)2=8(x−3)
(y−3)2=8(x−3)(y-3)^2=8(x-3)(y−3)2=8(x−3)
Determine the equation of a parabola given focus F(4, 3) and directrix y = -1.
(y−3)2=4(x−4)(y-3)^2=4(x-4)(y−3)2=4(x−4)
(x−4)2=4(y−3)(x-4)^2=4(y-3)(x−4)2=4(y−3)
Find the equation of a parabola with focus F(2, -3) and directrix y = 1.
(y+2)2=−4(x−3)(y+2)^2=-4(x-3)(y+2)2=−4(x−3)
(y+3)2=−4(x−2)(y+3)^2=-4(x-2)(y+3)2=−4(x−2)
Write the equation of a parabola with focus F(-1, 1) and directrix y = -5.
(y−1)2=4(x+1)(y-1)^2=4(x+1)(y−1)2=4(x+1)
(y+1)2=4(x−1)(y+1)^2=4(x-1)(y+1)2=4(x−1)
Given focus F(1, 3) and directrix y = -1, determine the equation of the parabola.
(y−3)2=8(x−1)(y-3)^2=8(x-1)(y−3)2=8(x−1)
(x−1)2=8(y−3)(x-1)^2=8(y-3)(x−1)2=8(y−3)
Write the equation of a parabola with focus F(-2, 4) and directrix y = -2.
(x+2)2=8 ( y−4)(x+2)^2=8\ (\ y-4)(x+2)2=8 ( y−4)
(y+2)2=8(x−4)(y+2)^2=8(x-4)(y+2)2=8(x−4)
Determine the equation of a parabola with focus F(3, 2) and directrix y = -6.
(x−3)2=8(y−2)(x-3)^2=8(y-2)(x−3)2=8(y−2)
It is done.