1 / 10
00
Evaluate the integral∫6x11dx\int_{ }^{ }6x^{11}dx∫6x11dx
12x12+c\frac{1}{2}x^{12}+c21x12+c
x6+cx^6+cx6+c
112x12+c\frac{1}{12}x^{12}+c121x12+c
Evaluate the integral∫5x9dx\int_{ }^{ }5x^9dx∫5x9dx
3x6+c3x^6+c3x6+c
15x10dx\frac{1}{5}x^{10}dx51x10dx
x10+cx^{10}+cx10+c
Evaluate the integral∫10x9dx\int_{ }^{ }10x^9dx∫10x9dx
Evaluate the integral ∫8x7dx\int_{ }^{ }8x^7dx∫8x7dx
x8+cx^8+cx8+c
15x10+c\frac{1}{5}x^{10}+c51x10+c
Evaluate the integral∫1x10dx\int_{ }^{ }\frac{1}{x^{10}}dx∫x101dx
ln∣4x∣+c\ln\left|4x\right|+cln∣4x∣+c
4ln∣x∣+c4\ln\left|x\right|+c4ln∣x∣+c
−19x9+c-\frac{1}{9x^9}+c−9x91+c
Evaluate the integral∫1dx\int_{ }^{ }1dx∫1dx
x+cx+cx+c
Evaluate the integral∫10x11dx\int_{ }^{ }\frac{10}{x^{11}}dx∫x1110dx
−1x10+c-\frac{1}{x^{10}}+c−x101+c
Evaluate the integral∫6x5dx\int_{ }^{ }6x^5dx∫6x5dx
2x3+c2x^3+c2x3+c
Evaluate the integral∫1x16dx\int_{ }^{ }\frac{1}{x^{16}}dx∫x161dx
−115x15+c-\frac{1}{15x^{15}}+c−15x151+c
−19x15+c-\frac{1}{9x^{15}}+c−9x151+c
Evaluate the integral∫1x5dx\int_{ }^{ }\frac{1}{x^5}dx∫x51dx
−14x4+c-\frac{1}{4x^4}+c−4x41+c
It is done.