1 / 10
00
Complete this statement:
If f (x)=Cos x and g(x)=x2 then ∫[f(x) - g(x)] dx = ___________.
sinx+x33+c\sin x+\frac{x^3}{3}+csinx+3x3+c
4x+x33+c4x+\frac{x^3}{3}+c4x+3x3+c
sinx−x33+c\sin x-\frac{x^3}{3}+csinx−3x3+c
If f (x)=4x and g(x)=x3 then ∫[f(x) - g(x)] dx = ___________.
2x2−x33+c2x^2-\frac{x^3}{3}+c2x2−3x3+c
2x2−x44+c2x^2-\frac{x^4}{4}+c2x2−4x4+c
Fill in the blank.
If f(x)=3x and g(x)=x7, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
−cotcot3x3−x88+c-\frac{\cot\cot3x}{3}-\frac{x^8}{8}+c−3cotcot3x−8x8+c
cotcot3x3+x88+c\frac{\cot\cot3x}{3}+\frac{x^8}{8}+c3cotcot3x+8x8+c
cotcot3x3+x88\frac{\cot\cot3x}{3}+\frac{x^8}{8}3cotcot3x+8x8
If f(x)=x124 and g(x)=x115, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
x125125−x116116+c\frac{x^{125}}{125}-\frac{x^{116}}{116}+c125x125−116x116+c
x125125+x116116\frac{x^{125}}{125}+\frac{x^{116}}{116}125x125+116x116
x125125−x116116\frac{x^{125}}{125}-\frac{x^{116}}{116}125x125−116x116
If f (x)=4x and g(x)=x2 then ∫[f(x) - g(x)] dx = ___________.
2x2−4x+c2x^2-4x+c2x2−4x+c
x33+c\frac{x^3}{3}+c3x3+c
If f(x)=8x and g(x)=e12x,then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
−cotcot8x8−e5x5+c-\frac{\cot\cot8x}{8}-\frac{e^{5x}}{5}+c−8cotcot8x−5e5x+c
tantan8x8−e12x12+c\frac{\tan\tan8x}{8}-\frac{e^{12x}}{12}+c8tantan8x−12e12x+c
tantan8x8+e12x12+c\frac{\tan\tan8x}{8}+\frac{e^{12x}}{12}+c8tantan8x+12e12x+c
If f(x)=5/x and g(x)=5e5x, then ∫[f(x)−g(x)]dx\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx∫[f(x)−g(x)]dx
5lnx+e5x+c5\ln x+e^{5x}+c5lnx+e5x+c
e5x+ce^{5x}+ce5x+c
5lnx−e5x+c5\ln x-e^{5x}+c5lnx−e5x+c
If f(x)= coscos41x and g(x)=e77x, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
sinsin41x41+e77x77+c\frac{\sin\sin41x}{41}+\frac{e^{77x}}{77}+c41sinsin41x+77e77x+c
−coscos4x4+e7x7+c-\frac{\cos\cos4x}{4}+\frac{e^{7x}}{7}+c−4coscos4x+7e7x+c
sinsin41x41−e77x77+c\frac{\sin\sin41x}{41}-\frac{e^{77x}}{77}+c41sinsin41x−77e77x+c
If f(x)=22x and g(x)=x17, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
tantan22x22−x1818+c\frac{\tan\tan22x}{22}-\frac{x^{18}}{18}+c22tantan22x−18x18+c
cotcot22x22+x818+c\frac{\cot\cot22x}{22}+\frac{x^8}{18}+c22cotcot22x+18x8+c
−tantan22x22+x818+c-\frac{\tan\tan22x}{22}+\frac{x^8}{18}+c−22tantan22x+18x8+c
If f(x)=sinsin7x and g(x)=e9x,then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
−coscos7x7−e9x9+c-\frac{\cos\cos7x}{7}-\frac{e^{9x}}{9}+c−7coscos7x−9e9x+c
−coscos4x4+e7x7-\frac{\cos\cos4x}{4}+\frac{e^{7x}}{7}−4coscos4x+7e7x
It is done.