1 / 10
00
Fill in the blank.
If f(x)=8/x and g(x)=1/x2, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
8lnx+1x+c8\ln x+\frac{1}{x}+c8lnx+x1+c
lnx−1x+c\ln x-\frac{1}{x}+clnx−x1+c
7lnx+1x+c7\ln x+\frac{1}{x}+c7lnx+x1+c
If f(x)=15x14 and g(x)=x15, then ∫[f(x)−g(x)]dx\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx∫[f(x)−g(x)]dx
x15−x1616+cx^{15}-\frac{x^{16}}{16}+cx15−16x16+c
x5−x66x^5-\frac{x^6}{6}x5−6x6
Complete this statement:
If f (x)=4x and g(x)=x3 then ∫[f(x) - g(x)] dx = ___________.
2x2−x33+c2x^2-\frac{x^3}{3}+c2x2−3x3+c
2x2−x44+c2x^2-\frac{x^4}{4}+c2x2−4x4+c
4x+x33+c4x+\frac{x^3}{3}+c4x+3x3+c
If f (x)=Cos x and g(x)=x2 then ∫[f(x) - g(x)] dx = ___________.
sinx+x33+c\sin x+\frac{x^3}{3}+csinx+3x3+c
sinx−x33+c\sin x-\frac{x^3}{3}+csinx−3x3+c
If f(x)=x124 and g(x)=x115, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
x125125−x116116+c\frac{x^{125}}{125}-\frac{x^{116}}{116}+c125x125−116x116+c
x125125+x116116\frac{x^{125}}{125}+\frac{x^{116}}{116}125x125+116x116
x125125−x116116\frac{x^{125}}{125}-\frac{x^{116}}{116}125x125−116x116
If f(x)=sinsin7x and g(x)=e9x,then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
−coscos7x7−e9x9+c-\frac{\cos\cos7x}{7}-\frac{e^{9x}}{9}+c−7coscos7x−9e9x+c
−coscos4x4+e7x7+c-\frac{\cos\cos4x}{4}+\frac{e^{7x}}{7}+c−4coscos4x+7e7x+c
−coscos4x4+e7x7-\frac{\cos\cos4x}{4}+\frac{e^{7x}}{7}−4coscos4x+7e7x
If f(x)=3x and g(x)=x7, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
−cotcot3x3−x88+c-\frac{\cot\cot3x}{3}-\frac{x^8}{8}+c−3cotcot3x−8x8+c
cotcot3x3+x88+c\frac{\cot\cot3x}{3}+\frac{x^8}{8}+c3cotcot3x+8x8+c
cotcot3x3+x88\frac{\cot\cot3x}{3}+\frac{x^8}{8}3cotcot3x+8x8
If f(x)=5x4 and g(x)=12e12x, then ∫[f(x)−g(x)]dx=\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx=∫[f(x)−g(x)]dx=
x5−e12x+cx^5-e^{12x}+cx5−e12x+c
x5+e12x+cx^5+e^{12x}+cx5+e12x+c
x5−e2xx^5-e^{2x}x5−e2x
If f (x)=4x and g(x)=x2 then ∫[f(x) - g(x)] dx = ___________.
2x2−4x+c2x^2-4x+c2x2−4x+c
x33+c\frac{x^3}{3}+c3x3+c
If f(x)=5/x and g(x)=5e5x, then ∫[f(x)−g(x)]dx\int_{ }^{ }\left[f\left(x\right)-g\left(x\right)\right]dx∫[f(x)−g(x)]dx
5lnx+e5x+c5\ln x+e^{5x}+c5lnx+e5x+c
e5x+ce^{5x}+ce5x+c
5lnx−e5x+c5\ln x-e^{5x}+c5lnx−e5x+c
It is done.