1 / 10
00
calculate∫xdx\int_{ }^{ }xdx∫xdx
xtantanx−x22+cx\tan\tan x-\frac{x^2}{2}+cxtantanx−2x2+c
x2(x2+1)−x2+c\frac{x}{2}\left(x^2+1\right)-\frac{x}{2}+c2x(x2+1)−2x+c
x2(x2+1)+x2+c\frac{x}{2}\left(x^2+1\right)+\frac{x}{2}+c2x(x2+1)+2x+c
Calculate∫(lnx)2dx\int_{ }^{ }\left(\ln x\right)^2dx∫(lnx)2dx
(xlnxx−2)+2x+c\left(x\ln xx-2\right)+2x+c(xlnxx−2)+2x+c
(xlnxx−2)−2x+c\left(x\ln xx-2\right)-2x+c(xlnxx−2)−2x+c
(lnxx−2)+2x+c\left(\ln xx-2\right)+2x+c(lnxx−2)+2x+c
Calculate∫xdx\int_{ }^{ }xdx∫xdx
xx−lnln∣x2+1∣2+cxx-\frac{\ln\ln\left|x^2+1\right|}{2}+cxx−2lnln∣x2+1∣+c
xx+lnln∣x2+1∣2+cxx+\frac{\ln\ln\left|x^2+1\right|}{2}+cxx+2lnln∣x2+1∣+c
Calculate∫ln(5x+1)dx\int_{ }^{ }\ln\left(5x+1\right)dx∫ln(5x+1)dx
xlnln(5x+1)+ln(5x+1)5−x−15+cx\ln\ln\left(5x+1\right)+\frac{\ln\left(5x+1\right)}{5}-x-\frac{1}{5}+cxlnln(5x+1)+5ln(5x+1)−x−51+c
xlnln(2x+1)+ln(2x+1)2+x−12+cx\ln\ln\left(2x+1\right)+\frac{\ln\left(2x+1\right)}{2}+x-\frac{1}{2}+cxlnln(2x+1)+2ln(2x+1)+x−21+c
xlnln(2x+1)+ln(5x+1)2−12+cx\ln\ln\left(2x+1\right)+\frac{\ln\left(5x+1\right)}{2}-\frac{1}{2}+cxlnln(2x+1)+2ln(5x+1)−21+c
Calculate ∫x2lnxdx\int_{ }^{ }x^2\ln xdx∫x2lnxdx
x3lnx3−x39+c\frac{x^3\ln x}{3}-\frac{x^3}{9}+c3x3lnx−9x3+c
x3lnx3+x39+c\frac{x^3\ln x}{3}+\frac{x^3}{9}+c3x3lnx+9x3+c
x3lnx3−x39\frac{x^3\ln x}{3}-\frac{x^3}{9}3x3lnx−9x3
Calculate ∫coscoslnln(2x)dx\int_{ }^{ }\cos\cos\ln\ln\left(2x\right)dx∫coscoslnln(2x)dx
xsinsinlnln(2x)2−xcoscoslnln(x)2+c\frac{x\sin\sin\ln\ln\left(2x\right)}{2}-\frac{x\cos\cos\ln\ln\left(x\right)}{2}+c2xsinsinlnln(2x)−2xcoscoslnln(x)+c
xsinsinlnln(2x)2+xcoscoslnln(2x)2+c\frac{x\sin\sin\ln\ln\left(2x\right)}{2}+\frac{x\cos\cos\ln\ln\left(2x\right)}{2}+c2xsinsinlnln(2x)+2xcoscoslnln(2x)+c
xsinsinlnln(2x)2−xcoscosslnln(x)2\frac{x\sin\sin\ln\ln\left(2x\right)}{2}-\frac{x\cos\cos s\ln\ln\left(x\right)}{2}2xsinsinlnln(2x)−2xcoscosslnln(x)
Calculate∫sinsinlnln(x)dx\int_{ }^{ }\sin\sin\ln\ln\left(x\right)dx∫sinsinlnln(x)dx
xsinsinlnln(x)2−xcoscoslnln(x)2+c\frac{x\sin\sin\ln\ln\left(x\right)}{2}-\frac{x\cos\cos\ln\ln\left(x\right)}{2}+c2xsinsinlnln(x)−2xcoscoslnln(x)+c
xsinsinlnln(x)2+xcoscoslnln(x)2+c\frac{x\sin\sin\ln\ln\left(x\right)}{2}+\frac{x\cos\cos\ln\ln\left(x\right)}{2}+c2xsinsinlnln(x)+2xcoscoslnln(x)+c
xsinsinlnln(x)2−xcoscoslnln(x)2\frac{x\sin\sin\ln\ln\left(x\right)}{2}-\frac{x\cos\cos\ln\ln\left(x\right)}{2}2xsinsinlnln(x)−2xcoscoslnln(x)
Calculate ∫xxdx\int_{ }^{ }xxdx∫xxdx
xtantan−lnln∣coscosx∣−x22+cx\tan\tan-\ln\ln\left|\cos\cos x\right|-\frac{x^2}{2}+cxtantan−lnln∣coscosx∣−2x2+c
xtantan+lnln∣coscosx∣−x22+cx\tan\tan+\ln\ln\left|\cos\cos x\right|-\frac{x^2}{2}+cxtantan+lnln∣coscosx∣−2x2+c
Calculate∫exx3dx\int_{ }^{ }e^xx^3dx∫exx3dx
x3ex−3(x2ex−2(xex−ex))+cx^3e^x-3\left(x^2e^x-2\left(xe^x-e^x\right)\right)+cx3ex−3(x2ex−2(xex−ex))+c
x3ex+3(x2ex−2(xex−ex))+cx^3e^x+3\left(x^2e^x-2\left(xe^x-e^x\right)\right)+cx3ex+3(x2ex−2(xex−ex))+c
x3ex−3(x2ex−(xex−ex))x^3e^x-3\left(x^2e^x-\left(xe^x-e^x\right)\right)x3ex−3(x2ex−(xex−ex))
Calculate∫ln(x+x2+1)dx\int_{ }^{ }\ln\left(x+\sqrt{x^2+1}\right)dx∫ln(x+x2+1)dx
(x+x2+1)+x2+1+c\left(x+\sqrt{x^2+1}\right)+\sqrt{x^2+1}+c(x+x2+1)+x2+1+c
(x+x2+1)−x2+1+c\left(x+\sqrt{x^2}+1\right)-\sqrt{x^2+1}+c(x+x2+1)−x2+1+c
lnln(x+x2+1)−x2+1+c\ln\ln\left(x+\sqrt{x^2+1}\right)-\sqrt{x^2+1}+clnln(x+x2+1)−x2+1+c
It is done.