1 / 10
00
Calculate∫12x+34dx\int_{ }^{ }\frac{1}{2x+34}dx∫2x+341dx
(ln|2x+34|)/2 + c
(ln|2x-34|)/2 + c
(ln|2x-34|)/2
Calculate∫1(x−7)2dx\int_{ }^{ }\frac{1}{\left(x-7\right)^2}dx∫(x−7)21dx
−1(x−7)2+c-\frac{1}{\left(x-7\right)^2}+c−(x−7)21+c
1(x−7)2\frac{1}{\left(x-7\right)^2}(x−7)21
1(x−7)2+c\frac{1}{\left(x-7\right)^2}+c(x−7)21+c
Calculate∫coscoslnln(x)dx\int_{ }^{ }\cos\cos\ln\ln\left(x\right)dx∫coscoslnln(x)dx
xsinsinlnln(x)2−xcoscoslnln(x)2+c\frac{x\sin\sin\ln\ln\left(x\right)}{2}-\frac{x\cos\cos\ln\ln\left(x\right)}{2}+c2xsinsinlnln(x)−2xcoscoslnln(x)+c
xsinsinlnln(x)2+xcoscoslnln(x)2+c\frac{x\sin\sin\ln\ln\left(x\right)}{2}+\frac{x\cos\cos\ln\ln\left(x\right)}{2}+c2xsinsinlnln(x)+2xcoscoslnln(x)+c
xsinsinlnln(x)2−xcoscoslnln(x)2\frac{x\sin\sin\ln\ln\left(x\right)}{2}-\frac{x\cos\cos\ln\ln\left(x\right)}{2}2xsinsinlnln(x)−2xcoscoslnln(x)
Calculate ∫(x2+1)2dx\int_{ }^{ }\left(x^2+1\right)^2dx∫(x2+1)2dx
x55+2x33+x+c\frac{x^5}{5}+\frac{2x^3}{3}+x+c5x5+32x3+x+c
x55+2x33+x\frac{x^5}{5}+\frac{2x^3}{3}+x5x5+32x3+x
x55+2x33+c\frac{x^5}{5}+\frac{2x^3}{3}+c5x5+32x3+c
Calculate∫1−x2dx\int_{ }^{ }\sqrt{1-x^2}dx∫1−x2dx
x2+14sinsin(2x)+c\frac{x}{2}+\frac{1}{4}\sin\sin\left(2x\right)+c2x+41sinsin(2x)+c
x2+sinsin(2x)+c\frac{x}{2}+\sin\sin\left(2x\right)+c2x+sinsin(2x)+c
x2+14sinsin(2x)\frac{x}{2}+\frac{1}{4}\sin\sin\left(2x\right)2x+41sinsin(2x)
calculate ∫9ex9x8dx\int_{ }^{ }9e^{x^9}x^8dx∫9ex9x8dx
ex9e^{x^9}ex9
9ex9+c9e^{x^9}+c9ex9+c
e−x9+ce^{-x^9}+ce−x9+c
Calculate∫x1+x2dx\int_{ }^{ }\frac{x}{1+x^2}dx∫1+x2xdx
x22+c\frac{x^2}{2}+c2x2+c
x22\frac{x^2}{2}2x2
−(x)22+c-\frac{\left(x\right)^2}{2}+c−2(x)2+c
Calculate∫ln(2x+1)dx\int_{ }^{ }\ln\left(2x+1\right)dx∫ln(2x+1)dx
xlnln(2x+1)+ln(2x+1)2−x−12+cx\ln\ln\left(2x+1\right)+\frac{\ln\left(2x+1\right)}{2}-x-\frac{1}{2}+cxlnln(2x+1)+2ln(2x+1)−x−21+c
lnln(2x+1)+ln(2x+1)2−x−12+c\ln\ln\left(2x+1\right)+\frac{\ln\left(2x+1\right)}{2}-x-\frac{1}{2}+clnln(2x+1)+2ln(2x+1)−x−21+c
Calculate ∫2x dx\int_{ }^{ }2x\ dx∫2x dx
x2−sinsin4x8+c\frac{x}{2}-\frac{\sin\sin4x}{8}+c2x−8sinsin4x+c
x2−sinsin4x8\frac{x}{2}-\frac{\sin\sin4x}{8}2x−8sinsin4x
x2+sinsin4x8+c\frac{x}{2}+\frac{\sin\sin4x}{8}+c2x+8sinsin4x+c
calculate ∫3x dx\int_{ }^{ }3x\ dx∫3x dx
x2−sinsin6x12+c\frac{x}{2}-\frac{\sin\sin6x}{12}+c2x−12sinsin6x+c
It is done.