1 / 10
00
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=sinsin(ex3)f\left(x\right)=\sin\sin\left(e^{x^3}\right)f(x)=sinsin(ex3).
cosx2ex3cos(ex3)\cos x^2e^{x^3}\cos\left(e^{x^3}\right)cosx2ex3cos(ex3)
cos3x2ex3cos(ex3)\cos3x^2e^{x^3}\cos\left(e^{x^3}\right)cos3x2ex3cos(ex3)
−(4x−6)-\left(4x-6\right)−(4x−6)
If y=f(u)y=f\left(u\right)y=f(u) and u=g(x)u=g\left(x\right)u=g(x). Calculate dydx\frac{dy}{dx}dxdy.
dydu\frac{dy}{du}dudy
dydxdxdu\frac{dy}{dx}\frac{dx}{du}dxdydudx
dydududx\frac{dy}{du}\frac{du}{dx}dudydxdu
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=tan(1+x2)f\left(x\right)=\sqrt{\tan\left(1+x^2\right)}f(x)=tan(1+x2).
sec2(x2+1)tan(1+x2)\frac{\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(1+x^2\right)}}tan(1+x2)sec2(x2+1)
xsec2(x2+1)tan(1+x2)\frac{x\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(1+x^2\right)}}tan(1+x2)xsec2(x2+1)
xsec2(x2+1)tan(x2)\frac{x\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(x^2\right)}}tan(x2)xsec2(x2+1)
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=tantan(x2)f\left(x\right)=\tan\tan\left(x^2\right)f(x)=tantan(x2).
2xsec(x2)2x\sec\left(x^2\right)2xsec(x2)
2sec(x2)2\sec\left(x^2\right)2sec(x2)
2xsec2(x2)2x\sec^2\left(x^2\right)2xsec2(x2)
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=sinsin(ex2)f\left(x\right)=\sin\sin\left(e^{x^2}\right)f(x)=sinsin(ex2).
cos3x2ex2cos(ex2)\cos3x^2e^{x^2}\cos\left(e^{x^2}\right)cos3x2ex2cos(ex2)
cos2xex2cos(ex2)\cos2xe^{x^2}\cos\left(e^{x^2}\right)cos2xex2cos(ex2)
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=coscos(tanx)f\left(x\right)=\cos\cos\left(\tan x\right)f(x)=coscos(tanx).
2xcos(x2)2x\cos\left(x^2\right)2xcos(x2)
sinsin(tanx)x\sin\sin\left(\tan x\right)xsinsin(tanx)x
−sinsin(tanx)x-\sin\sin\left(\tan x\right)x−sinsin(tanx)x
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=sinsin(x2)f\left(x\right)=\sin\sin\left(x^2\right)f(x)=sinsin(x2).
2cos(x2)2\cos\left(x^2\right)2cos(x2)
xcos(x2)x\cos\left(x^2\right)xcos(x2)
Use chain rule to find dydx\frac{dy}{dx}dxdy, if y=f(u)=u+1y=f\left(u\right)=u+1y=f(u)=u+1 and x=u+1ux=u+\frac{1}{u}x=u+u1.
2u2u2 −1\frac{2u^2}{u^{2\ }-1}u2 −12u2
u2u2 +1\frac{u^2}{u^{2\ }+1}u2 +1u2
u2u2 −1\frac{u^2}{u^{2\ }-1}u2 −1u2
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=sinsin(2x2−6x)f\left(x\right)=\sin\sin\left(2x^2-6x\right)f(x)=sinsin(2x2−6x).
(4x−6)coscos(2x2−6x)\left(4x-6\right)\cos\cos\left(2x^2-6x\right)(4x−6)coscos(2x2−6x)
coscos(2x2−6x)\cos\cos\left(2x^2-6x\right)coscos(2x2−6x)
Use chain rule to find f′(x)f'\left(x\right)f′(x), if f(x)=x+xf\left(x\right)=\sqrt{x+\sqrt{x}}f(x)=x+x.
2x4x+xx\frac{2\sqrt{x}}{4\sqrt{x+\sqrt{x}}\sqrt{x}}4x+xx2x
2x+14x+xx\frac{2\sqrt{x}+1}{4\sqrt{x+\sqrt{x}}\sqrt{x}}4x+xx2x+1
x+14x+xx\frac{\sqrt{x}+1}{4\sqrt{x+\sqrt{x}}\sqrt{x}}4x+xxx+1
It is done.