1 / 10
00
If f(x)=1(x−1)3′f\left(x\right)=\frac{1}{\left(x-1\right)^{3'}}f(x)=(x−1)3′1 find f(x)
-1
0
∞
- ∞
Is the sentence true or false?
If the values of f(x) increase without bound as the values of x approaches a from right then
limx→a−f(x)=−∞\lim_{x\to a}-f\left(x\right)=-\inftylimx→a−f(x)=−∞
True
False
If f(x)=−1(x)20′f\left(x\right)=-\frac{1}{\left(x\right)^{20'}}f(x)=−(x)20′1 find f(x)
If f(x)=−1x−2′f\left(x\right)=-\frac{1}{x-2'}f(x)=−x−2′1 ,find f(x)
If f(x)=1(x−5)3′f\left(x\right)=\frac{1}{\left(x-5\right)^{3'}}f(x)=(x−5)3′1 find f(x) is ∞
If f(x)=1(x−2′)f\left(x\right)=\frac{1}{\left(x-2'\right)}f(x)=(x−2′)1 find f(x)
If f(x) =1/(x2-9’), find f(x)
If the values of f(x) decrease without bound as the values of x (where x>a) approach the number a, then we say that the limit as x approaches a from the right is negative infinity.
If f(x)=1(x−5)3′f\left(x\right)=\frac{1}{\left(x-5\right)^{3'}}f(x)=(x−5)3′1 find f(x)
If f(y)=1(1−y)2′f\left(y\right)=\frac{1}{\left(1-y\right)^{2'}}f(y)=(1−y)2′1 find f(y)
It is done.