1 / 10
00
Fill in the blank:
ddx[lnx]=\frac{d}{dx}\left[\sqrt{\ln x}\right]=dxd[lnx]= __________.
1+2lnlnx2lnx\frac{1+2\ln\ln x}{2\sqrt{\ln x}}2lnx1+2lnlnx
lnln1+2lnlnx2lnx\ln\ln\frac{1+2\ln\ln x}{2\sqrt{\ln x}}lnln2lnx1+2lnlnx
12lnx\frac{1}{2\sqrt{\ln x}}2lnx1
ddx[xlnx]=\frac{d}{dx}\left[x\ln x\right]=dxd[xlnx]= __________.
−3xx1−x2-\frac{3x^x}{1-x^2}−1−x23xx
lnlnx+1\ln\ln x+1lnlnx+1
xx(loglogx+1)x^x\left(\log\log x+1\right)xx(loglogx+1)
ddx[(x2+5x)]=\frac{d}{dx}\left[\left(x^2+5x\right)\right]=dxd[(x2+5x)]= __________.
2x+5x2+5x\frac{2x+5}{x^2+5x}x2+5x2x+5
2x+51−x2\frac{2x+5}{\sqrt{1-x^2}}1−x22x+5
11+x2\frac{1}{\sqrt{1+x^2}}1+x21
ddx[5xlnx]=\frac{d}{dx}\left[5x\sqrt{\ln x}\right]=dxd[5xlnx]= __________.
5(lnx+12lnx)5\left(\sqrt{\ln x}+\frac{1}{2\sqrt{\ln x}}\right)5(lnx+2lnx1)
5+2lnlnx2lnx\frac{5+2\ln\ln x}{2\sqrt{\ln x}}2lnx5+2lnlnx
5xlnlnx+x25x\ln\ln x+\frac{x}{2}5xlnlnx+2x
If f(x)=lnln(9x2+1)f\left(x\right)=\ln\ln\left(9x^2+1\right)f(x)=lnln(9x2+1). Then ddx[f(x)]=\frac{d}{dx}\left[f\left(x\right)\right]=dxd[f(x)]= __________.
39x2+1\frac{3}{9x^2+1}9x2+13
19x2+1\frac{1}{9x^2+1}9x2+11
18x9x2+1\frac{18x}{9x^2+1}9x2+118x
ddx[lnln(x2+15)]=\frac{d}{dx}\left[\ln\ln\left(\frac{x^2+1}{5}\right)\right]=dxd[lnln(5x2+1)]= __________.
2x−1+x4\frac{2x}{-1+x^4}−1+x42x
2xx2+1\frac{2x}{x^2+1}x2+12x
−11−x2\frac{-1}{\sqrt{1-x^2}}1−x2−1
ddx[(tantanx)]=\frac{d}{dx}\left[\left(\tan\tan x\right)\right]=dxd[(tantanx)]= __________.
2coscos2x2\cos\cos2x2coscos2x
2cotcot2x2\cot\cot2x2cotcot2x
2csccsc2x2\csc\csc2x2csccsc2x
ddx[lnln(x2+3)]=\frac{d}{dx}\left[\ln\ln\left(x^2+3\right)\right]=dxd[lnln(x2+3)]= __________.
2x3−x2\frac{2x}{3-x^2}3−x22x
19−x2\frac{1}{\sqrt{9-x^2}}9−x21
2xx2+3\frac{2x}{x^2+3}x2+32x
ddx[ln(sinx)]=\frac{d}{dx}\left[\ln\left(\sin x\right)\right]=dxd[ln(sinx)]= __________.
cotcotx\cot\cot xcotcotx
sinx1+cosx\frac{\sin x}{1+\cos x}1+cosxsinx
2cscx2\csc x2cscx
ddx[13lnlnx3]=\frac{d}{dx}\left[\frac{1}{3}\ln\ln x^3\right]=dxd[31lnlnx3]= __________.
12+x2\frac{1}{\sqrt{2+x^2}}2+x21
1x\frac{1}{x}x1
3x\frac{3}{x}x3
It is done.