1 / 10
00
Fill in the blank:
If y=14t+ety=14t+e^ty=14t+et, then dydt=\frac{dy}{dt}=dtdy= __________.
14t\frac{14}{t}t14
−71+et2-\frac{7}{1+e^{t^2}}−1+et27
14+et14+e^t14+et
ddv[coscosv3]=\frac{d}{dv}\left[\cos\cos\frac{v}{3}\right]=dvd[coscos3v]= __________.
−sinv-\sin v−sinv
−13v3-\frac{1}{3}\frac{v}{3}−313v
v3\frac{v}{3}3v
If y=lnln7xy=\ln\ln7xy=lnln7x. Then dydx=\frac{dy}{dx}=dxdy= __________.
1x\frac{1}{x}x1
−kx-kx−kx
kx\frac{k}{x}xk
Find the derivative of ef(x)e^{f\left(x\right)}ef(x) with respect to xxx.
ef(x)e^{f\left(x\right)}ef(x)
f’(x)ef(x)f’\left(x\right)e^{f\left(x\right)}f’(x)ef(x)
If y=lnln(f(x))y=\ln\ln\left(f\left(x\right)\right)y=lnln(f(x)), then dydx=\frac{dy}{dx}=dxdy= __________.
f’(x)f(x)\frac{f’\left(x\right)}{f\left(x\right)}f(x)f’(x)
sint1−cost\frac{\sin t}{1-\cos t}1−costsint
−f’(x)f(x)-\frac{f’\left(x\right)}{f\left(x\right)}−f(x)f’(x)
Find the derivative of lnln(3x+11)\ln\ln\left(3x+11\right)lnln(3x+11) with respect to xxx.
3(3x+11)\frac{3}{\left(3x+11\right)}(3x+11)3
x(2x+1)(1+x2)\frac{x}{\left(2x+1\right)\left(1+x^2\right)}(2x+1)(1+x2)x
2x(2x+1)(1+x2)\frac{2x}{\left(2x+1\right)\left(1+x^2\right)}(2x+1)(1+x2)2x
If y=e2ty=e^{2t}y=e2t, then dydt=\frac{dy}{dt}=dtdy= __________.
1t\frac{1}{t}t1
e2te^{2t}e2t
2e2t2e^{2t}2e2t
ddt[lnln11t]=\frac{d}{dt}\left[\ln\ln11t\right]=dtd[lnln11t]= __________.
−sint1−cost-\frac{\sin t}{1-\cos t}−1−costsint
Differentiate sin(6x)\sin\left(6x\right)sin(6x) with respect to xxx.
6coscos6x6\cos\cos6x6coscos6x
coscos6x\cos\cos6xcoscos6x
6csccsc6x6\csc\csc6x6csccsc6x
Differentiate sin(5x2)\sin\left(5x^2\right)sin(5x2) with respect to xxx.
10xcos(5x2)10x\cos\left(5x^2\right)10xcos(5x2)
xcos(5x2)x\cos\left(5x^2\right)xcos(5x2)
cos(5x2)\cos\left(5x^2\right)cos(5x2)
It is done.