1 / 10
00
Fill in the blank:
ddx[sinx+cosx]=\frac{d}{dx}\left[\sin x+\cos x\right]=dxd[sinx+cosx]= __________.
2cosx−sinx2\cos x-\sin x2cosx−sinx
cosx+sinx\cos x+\sin xcosx+sinx
cosx−sinx\cos x-\sin xcosx−sinx
ddx[sinx1+cosx]=\frac{d}{dx}\left[\frac{\sin x}{1+\cos x}\right]=dxd[1+cosxsinx]= __________.
x1+cosx\frac{x}{1+\cos x}1+cosxx
sinx1+cosx\frac{\sin x}{1+\cos x}1+cosxsinx
11+cosx\frac{1}{1+\cos x}1+cosx1
ddx[xsinx]=\frac{d}{dx}\left[x\sin x\right]=dxd[xsinx]= __________.
xcosx+sinxx\cos x+\sin xxcosx+sinx
ddx[tanx−1secx]=\frac{d}{dx}\left[\frac{\tan x-1}{\sec x}\right]=dxd[secxtanx−1]= __________.
[sec2x−tanx]x2\frac{\left[\sec^2x-\tan x\right]}{x^2}x2[sec2x−tanx]
[x−tanx]x2\frac{\left[x-\tan x\right]}{x^2}x2[x−tanx]
ddx[excosx]=\frac{d}{dx}\left[e^x\cos x\right]=dxd[excosx]= __________.
2excosx−sinx2e^x\cos x-\sin x2excosx−sinx
ex[cosx−sinx]e^x\left[\cos x-\sin x\right]ex[cosx−sinx]
ex[cosx+sinx]e^x\left[\cos x+\sin x\right]ex[cosx+sinx]
ddx[exsinx]=\frac{d}{dx}\left[e^x\sin x\right]=dxd[exsinx]= __________.
ddx[xsinxcosx]=\frac{d}{dx}\left[x\sin x\cos x\right]=dxd[xsinxcosx]= __________.
xcos2x+cosxx\cos2x+\cos xxcos2x+cosx
cos2x+sinxcosx\cos2x+\sin x\cos xcos2x+sinxcosx
xcos2x+sinxcosxx\cos2x+\sin x\cos xxcos2x+sinxcosx
ddx[4sect+tant]=\frac{d}{dx}\left[4\sec t+\tan t\right]=dxd[4sect+tant]= __________.
2cost−sint2\cos t-\sin t2cost−sint
cost+sec2t\cos t+\sec^2tcost+sec2t
4secsecttantant+sec2t4\sec\sec t\tan\tan t+\sec^2t4secsecttantant+sec2t
ddx[tanxx]=\frac{d}{dx}\left[\frac{\tan x}{x}\right]=dxd[xtanx]= __________.
[xsec2x−tanx]x2\frac{\left[x\sec^2x-\tan x\right]}{x^2}x2[xsec2x−tanx]
ddx[cosx−2tanx]=\frac{d}{dx}\left[\cos x-2\tan x\right]=dxd[cosx−2tanx]= __________.
−sinx−2x-\sin x-2x−sinx−2x
It is done.