1 / 10
00
Find the domain of function y=−5cscxy=-5\csc xy=−5cscx.
x ∈ R, x≠n πx\ ∈\ R,\ x\ne n\ \pix ∈ R, x=n π
x ∈ R, x=n π ±π2x\ ∈\ R,\ x=n\ \pi\ \pm\frac{\pi}{2}x ∈ R, x=n π ±2π
x ∈ R, x≠(2n+1)π2x\ ∈\ R,\ x\ne\left(2n+1\right)\frac{\pi}{2}x ∈ R, x=(2n+1)2π
Find the domain of function y=csc7xy=\csc7xy=csc7x.
x ∈ R, x≠π7±nπ2x\ ∈\ R,\ x\ne\frac{\pi}{7}\pm\frac{n\pi}{2}x ∈ R, x=7π±2nπ
x ∈ R, x =n π±π2x\ ∈\ R,\ x\ =n\ \pi\pm\frac{\pi}{2}x ∈ R, x =n π±2π
x ∈ R, x≠nπ7x\ ∈\ R,\ x\ne\frac{n\pi}{7}x ∈ R, x=7nπ
Find the domain of function y=−4csc3xy=-4\csc3xy=−4csc3x.
x ∈ R, x≠nπ3x\ ∈\ R,\ x\ne\frac{n\pi}{3}x ∈ R, x=3nπ
x ∈ R, x=n π±π2x\ ∈\ R,\ x=n\ \pi\pm\frac{\pi}{2}x ∈ R, x=n π±2π
Find the domain of y=1+2cscxy=1+2\csc xy=1+2cscx.
x ∈ R, x ≠n πx\ ∈\ R,\ x\ \ne n\ \pix ∈ R, x =n π
x ∈ R, x =n π ±π2x\ ∈\ R,\ x\ =n\ \pi\ \pm\frac{\pi}{2}x ∈ R, x =n π ±2π
x ∈ R, x ≠(2n +1)π2x\ ∈\ R,\ x\ \ne\left(2n\ +1\right)\frac{\pi}{2}x ∈ R, x =(2n +1)2π
Find the domain of function y=csc5xy=\csc5xy=csc5x.
x ∈ R, x ≠π4±nπ2x\ ∈\ R,\ x\ \ne\frac{\pi}{4}\pm\frac{n\pi}{2}x ∈ R, x =4π±2nπ
x ∈ R, x ≠nπ5x\ ∈\ R,\ x\ \ne\frac{n\pi}{5}x ∈ R, x =5nπ
x ∈ R, x≠π10±nπ5x\ ∈\ R,\ x\ne\frac{\pi}{10}\pm\frac{n\pi}{5}x ∈ R, x=10π±5nπ
Find the domain of y=csc3xy=\csc3xy=csc3x.
x ∈ R, x ≠nπ3x\ ∈\ R,\ x\ \ne\frac{n\pi}{3}x ∈ R, x =3nπ
Find the domain of function y=csc2xy=\csc2xy=csc2x.
x ∈ R, x ≠nπ2x\ ∈\ R,\ x\ \ne\frac{n\pi}{2}x ∈ R, x =2nπ
Find the domain of function y=3csc(x3)+1y=3\csc\left(\frac{x}{3}\right)+1y=3csc(3x)+1.
x ∈ R, x≠n π±π2x\ ∈\ R,\ x\ne n\ \pi\pm\frac{\pi}{2}x ∈ R, x=n π±2π
x ∈ R, x≠3nπx\ ∈\ R,\ x\ne3n\pix ∈ R, x=3nπ
Find the domain of function y=−5csc(x2)y=-5\csc\left(\frac{x}{2}\right)y=−5csc(2x).
x ∈ R, x≠n π±π3x\ ∈\ R,\ x\ne n\ \pi\pm\frac{\pi}{3}x ∈ R, x=n π±3π
x ∈ R, x≠(2n)πx\ ∈\ R,\ x\ne\left(2n\right)\pix ∈ R, x=(2n)π
Find the domain of function y=csc(x2)y=\csc\left(\frac{x}{2}\right)y=csc(2x).
It is done.