1 / 10
00
Find the domain of function y=cot3xy=\cot3xy=cot3x.
x ∈ R, x≠nπ3x\ ∈\ R,\ x\ne\frac{n\pi}{3}x ∈ R, x=3nπ
x ∈ R, x=n π±π2x\ ∈\ R,\ x=n\ \pi\pm\frac{\pi}{2}x ∈ R, x=n π±2π
x ∈ R, x≠(2n+1)π2x\ ∈\ R,\ x\ne\left(2n+1\right)\frac{\pi}{2}x ∈ R, x=(2n+1)2π
Find the domain of function y=−5cot(x2)y=-5\cot\left(\frac{x}{2}\right)y=−5cot(2x).
x ∈ R, x≠n π±π3x\ ∈\ R,\ x\ne n\ \pi\pm\frac{\pi}{3}x ∈ R, x=n π±3π
x ∈ R, x≠(2n)πx\ ∈\ R,\ x\ne\left(2n\right)\pix ∈ R, x=(2n)π
Find the domain of function y=cot(x2)y=\cot\left(\frac{x}{2}\right)y=cot(2x).
Find the domain of function y=1+2cotxy=1+2\cot xy=1+2cotx.
x ∈ R, x≠n πx\ ∈\ R,\ x\ne n\ \pix ∈ R, x=n π
Find the domain of function y=−5cotxy=-5\cot xy=−5cotx.
Find the domain of function y=cot7xy=\cot7xy=cot7x.
x ∈ R, x≠π7±nπ2x\ ∈\ R,\ x\ne\frac{\pi}{7}\pm\frac{n\pi}{2}x ∈ R, x=7π±2nπ
x ∈ R, x≠nπ7x\ ∈\ R,\ x\ne\frac{n\pi}{7}x ∈ R, x=7nπ
Find the domain of function y=3cot(x3)+1y=3\cot\left(\frac{x}{3}\right)+1y=3cot(3x)+1.
x ∈ R, x≠n π±π2x\ ∈\ R,\ x\ne n\ \pi\pm\frac{\pi}{2}x ∈ R, x=n π±2π
x ∈ R, x≠3nπx\ ∈\ R,\ x\ne3n\pix ∈ R, x=3nπ
Find the domain of function y=cot2xy=\cot2xy=cot2x.
x ∈ R, x≠π4±nπ2x\ ∈\ R,\ x\ne\frac{\pi}{4}\pm\frac{n\pi}{2}x ∈ R, x=4π±2nπ
x ∈ R, x≠nπ2x\ ∈\ R,\ x\ne\frac{n\pi}{2}x ∈ R, x=2nπ
Find the domain of function y=−4cot3xy=-4\cot3xy=−4cot3x.
Find the domain of function y=cot5xy=\cot5xy=cot5x.
x ∈ R, x≠nπ5x\ ∈\ R,\ x\ne\frac{n\pi}{5}x ∈ R, x=5nπ
x ∈ R, x≠π10±nπ5x\ ∈\ R,\ x\ne\frac{\pi}{10}\pm\frac{n\pi}{5}x ∈ R, x=10π±5nπ
It is done.