1 / 10
00
Estimate limit using an analytic approach:
(1x−2)\left(\frac{1}{x-2}\right)(x−21)
3
10
fail to exist
(1x−10)3\left(\frac{1}{x-10}\right)^3(x−101)3
1/4
1/2
(x2−3x)(x2+5x)\frac{\left(x^2-3x\right)}{\left(x^2+5x\right)}(x2+5x)(x2−3x)
13
-3/5
|x|
0
(x2+3x)(x2−7x)\frac{\left(x^2+3x\right)}{\left(x^2-7x\right)}(x2−7x)(x2+3x)
2/3
-3/7
(1x−2)2\left(\frac{1}{x-2}\right)^2(x−21)2
(1x−4)\left(\frac{1}{x-4}\right)(x−41)
(1x−7)2\left(\frac{1}{x-7}\right)^2(x−71)2
1
(x2+2x)(x2+3x)\frac{\left(x^2+2x\right)}{\left(x^2+3x\right)}(x2+3x)(x2+2x)
(1x−1)\left(\frac{1}{x-1}\right)(x−11)
It is done.