1 / 10
00
If f(x)=1x−3′f\left(x\right)=\frac{1}{x-3'}f(x)=x−3′1 find f(x)
-1
0
∞
-∞
Is the sentence true or false?
If f(x)=1(1−x)5′f\left(x\right)=\frac{1}{\left(1-x\right)^{5'}}f(x)=(1−x)5′1 find f(x) is ∞
True
False
If f(x)=1x2−4′f\left(x\right)=\frac{1}{x^2-4'}f(x)=x2−4′1 find f(x)
If the values of f(x) decrease without bound as the values of x (where x<a) approach the number a, then we say that the limit as x approaches a from the left is negative infinity.
If the values of f(x) increase without bound as the values of x approaches a then
limx→a−f(x)=+∞\lim_{x\to a}-f\left(x\right)=+\inftylimx→a−f(x)=+∞
If f(x)=1(1−x)2′f\left(x\right)=\frac{1}{\left(1-x\right)^{2'}}f(x)=(1−x)2′1 , find f(x)
If f(x)=1(x−5)20′f\left(x\right)=\frac{1}{\left(x-5\right)^{20'}}f(x)=(x−5)20′1 find f(x)
If f(x)=1(x−5)3′f\left(x\right)=\frac{1}{\left(x-5\right)^{3'}}f(x)=(x−5)3′1 find f(x)
If f(x)=1(x−1)3′f\left(x\right)=\frac{1}{\left(x-1\right)^{3'}}f(x)=(x−1)3′1 find f(x)
Iff(x)=1(x−2)21′f\left(x\right)=\frac{1}{\left(x-2\right)^{21'}}f(x)=(x−2)21′1 find f(x)
It is done.