1 / 10
00
Evaluate the value of limx→13x2+1\lim_{x\to1}3x^2+1limx→13x2+1 is
2
3
4
5
Evaluate the value of
limx→1x4\lim_{x\to1}x^4limx→1x4
1
6
8
Find the value of
limx→−1(−x2)\lim_{x\to-1}\left(-x^2\right)limx→−1(−x2)
0
-2
-1
-8
Evaluate limx→0(x+1)2\lim_{x\to0}\left(x+1\right)^2limx→0(x+1)2
Is this statement true or false?
The value of
limx→5(2x+4)=13\lim_{x\to5}\left(2x+4\right)=13limx→5(2x+4)=13
True
False
limx→3(x+20)\lim_{x\to3}\left(x+20\right)limx→3(x+20)
11
122
121
23
Fill in the blanks
The Value of
limx→2x3\lim_{x\to2}x^3limx→2x3 is
Find the value of limx→−32x2\lim_{x\to-3}2x^2limx→−32x2 is
29
83
99
18
Evaluate limx→1x\lim_{x\to1}xlimx→1x
limx→1(1−x2)=0\lim_{x\to1}\left(1-x^2\right)=0limx→1(1−x2)=0
It is done.