1 / 10
00
Use chain rule to evaluate d/dx [f(x)], if f(x)= cos cos(tanx)
2xcos(x2)
sinsin(tanx)x
-sinsin(tanx)x
Use chain rule to evaluate d/dx [f(x)] if f(x)=x+xf\left(x\right)=\sqrt{x+\sqrt{x}}f(x)=x+x
2x4x+x x\frac{2\sqrt{x}}{4\sqrt{x+\sqrt{x}\ \sqrt{x}}}4x+x x2x
(2x+1)4x+x x\frac{\left(2\sqrt{x}+1\right)}{4\sqrt{x+\sqrt{x}\ \sqrt{x}}}4x+x x(2x+1)
(x+1)4x+x x\frac{\left(\sqrt{x}+1\right)}{4\sqrt{x+\sqrt{x}\ \sqrt{x}}}4x+x x(x+1)
Use chain rule to evaluate d/dx [f(x)], if f(x)=sinsin(2x2-6x)
(4x−6)cos cos(2x2−6x)\left(4x-6\right)\cos\ \cos\left(2x^2-6x\right)(4x−6)cos cos(2x2−6x)
coscos(2x2−6x)\cos\cos\left(2x^2-6x\right)coscos(2x2−6x)
−(4x−6)coscos(2x2−6x)-\left(4x-6\right)\cos\cos\left(2x^2-6x\right)−(4x−6)coscos(2x2−6x)
Use chain rule to evaluate d/dx [f(x)], if f(x)=tan(1+x2)f\left(x\right)=\sqrt{\tan\left(1+x^2\right)}f(x)=tan(1+x2)
sec2(x2+1)tan(1+x2)\frac{\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(1+x^2\right)}}tan(1+x2)sec2(x2+1)
xsec2(x2+1)tan(1+x2)\ \frac{x\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(1+x^2\right)}} tan(1+x2)xsec2(x2+1)
xsec2(x2+1)tan(x2)\ \frac{x\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(x^2\right)}} tan(x2)xsec2(x2+1)
Use chain rule to find dy/dx. if y=f(u)=u+1and x=u+(1/u)
2u2u2−1\frac{2u^2}{u^2-1}u2−12u2
u2u2+1\frac{u^2}{u^2+1}u2+1u2
u2u2−1\frac{u^2}{u^2-1}u2−1u2
Use chain rule to evaluate d/dx [f(x)], if f(x)=sinsin(ex3)
Cos x2ex3 cos(ex3)
cos3x2ex3 cos(ex3)
-(4x-6) cos cos (2x2 -6x)
Use chain rule to evaluate d/dx [f(x)], if f(x)= tantan(x2)
2x sec(x2)
2sec(x2)
2x sec2(x2)
Use chain rule to evaluate d/dx [f(x)], if f(x)=sinsin(ex2)
Cosx2 ex3 cos(ex3)
cos3x2 ex2 cos(ex2)
cos 2xex2 cos(ex2)
Use chain rule to evaluate d/dx [f(x)], if f(x)= sin sin(x2)
2cos(x2)
xcos(x2)
If y=f(u) and u=g(x). Calculate dy/dx
dydu\frac{dy}{du}dudy
dydx dxdu\frac{dy}{dx}\ \frac{dx}{du}dxdy dudx
dydu dudx\frac{dy}{du}\ \frac{du}{dx}dudy dxdu
It is done.