1 / 10
00
Use chain rule to find f’(x), if f(x)= cos cos (x2)
2xcos(x2)
2cos(x2)
xcos(x2)
Use chain rule to find f’(x), if f(x)=sinxf\left(x\right)=\sin\sqrt{x}f(x)=sinx
12cosx\frac{1}{2}\cos\sqrt{x}21cosx
(2x+1)4x+x x\frac{\left(2\sqrt{x}+1\right)}{4\sqrt{x+\sqrt{x}\ \ \sqrt{x}}}4x+x x(2x+1)
12xcosx\frac{1}{2}\sqrt{x}\cos\sqrt{x}21xcosx
Use chain rule to find f’(x), if f(x)=tan(1+x2)f\left(x\right)=\sqrt{\tan\left(1+x^2\right)}f(x)=tan(1+x2)
sec2(x2+1)tan(1+x2)\frac{\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(1+x^2\right)}}tan(1+x2)sec2(x2+1)
xsec2(x2+1)tan(1+x2)\frac{x\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(1+x^2\right)}}tan(1+x2)xsec2(x2+1)
xsec2(x2+1)tan(x2)\frac{x\sec^2\left(x^2+1\right)}{\sqrt{\tan\left(x^2\right)}}tan(x2)xsec2(x2+1)
Use chain rule to find f’(x), if f(X)= sinsin (ex2)
Cosx2ex3 cos(ex3)
cos3x2 ex2 cos(ex2)
cos2xex2 cos (ex2)
Use chain rule to find f’(x), if f(x)=cos cos (tanx)
sinsin(tanx)x
-sinsin(tanx)x
Use chain rule to find dy/dx, if y=sin2x
2cos2x
2 sinx
cos2x
If f(x) and g(x) are differentiable then ddx[fog(x)]\frac{d}{dx}\left[fog\left(x\right)\right]dxd[fog(x)] =
F’[g(x)]
f’[g(x)]g’(x)
f’[g(x)]g(x)
Use chain rule to find f’(x), if f(x) = sin sin(ex3)
cos 3x2 ex3 cos( ex3)
-(4x-6)cos cos (2x2-6x)
Use chain rule to find f’(x), if f(X) = 2 tan tan (x2)
2x sec(x2)
2sec(x2)
4xsec2(x2)
If y=f(u) and u=g(x). Calculate dy/dx
dydu\frac{dy}{du}dudy
dydx dxdu\frac{dy}{dx}\ \frac{dx}{du}dxdy dudx
dydu dudx\frac{dy}{du}\ \frac{du}{dx}dudy dxdu
It is done.