1 / 10
00
Find the polar form of the conic given a focus at the origin, e=3/2 and directory x=-8/3
r=11−cosαr=\frac{1}{1-\cos\alpha}r=1−cosα1
r=105−4cosαr=\frac{10}{5-4\cos\alpha}r=5−4cosα10
r=82−3sinαr=\frac{8}{2-3\sin\alpha}r=2−3sinα8
Find the polar form of the conic given a focus at the origin, e=1 and directory y = -7/2
r=53+3cosαr=\frac{5}{3+3\cos\alpha}r=3+3cosα5
r=21+2sinαr=\frac{2}{1+2\sin\alpha}r=1+2sinα2
r=72−2sinαr=\frac{7}{2-2\sin\alpha}r=2−2sinα7
Find the polar form of the conic given a focus at the origin, e=2 and directory y=1
r=81−4sinαr=\frac{8}{1-4\sin\alpha}r=1−4sinα8
Find the polar form of the conic given a focus at the origin, e=4/5 and directory x=-5/2
r=125+3cosαr=\frac{12}{5+3\cos\alpha}r=5+3cosα12
r=61−3sinαr=\frac{6}{1-3\sin\alpha}r=1−3sinα6
Find the polar form of the conic given a focus at the origin, e=2 and directrix x=-2
r=41−2cosαr=\frac{4}{1-2\cos\alpha}r=1−2cosα4
Find the polar form of the conic given a focus at the origin, e=4 and directory y=−2
Find the polar form of the conic given a focus at the origin, e=1 and directrix x=5/3
Find the polar form of the conic given a focus at the origin, e=3/5 and directrix x=4
Find the polar form of the conic given a focus at the origin, e=1 and directrix x=-1
Find the polar form of the conic given a focus at the origin, e=1/3 and directory x=−2
r=23−cosαr=\frac{2}{3-\cos\alpha}r=3−cosα2
It is done.