Questions

1 / 10

Time
Score

00

Finding integrals by integration by parts

Complete x.ex(1+x)2dx\int_{ }^{ }\frac{x.e^x}{\left(1+x\right)^2}dx =

Fill in the blank:x4.lnxdx=..........\int_{ }^{ }x^4.\ln xdx=..........

Complete ex(1x+lnx)dx\int_{ }^{ }e^x\left(\frac{1}{x}+\ln x\right)dx =

Fill in the blank:lnxdx=.......\int_{ }^{ }\ln xdx=.......

Fill in the blank:xlnxdx=........\int_{ }^{ }x\ln xdx=........

complete ex(cosxsinx)dx=\int_{ }^{ }e^{-x}\left(\cos x-\sin x\right)dx=

Fill in the blank:xexdx=........\int_{ }^{ }xe^xdx=........

Complete ex(sinx+cosx)dx\int_{ }^{ }e^x\left(\sin x+\cos x\right)dx =

Fill in the blank:x2lnxdx=.........\int_{ }^{ }x^2\ln xdx=.........

Fill in the blank:x3lnxdx=.......\int_{ }^{ }x^3\ln xdx=.......