1 / 10
00
Complete ∫x.ex(1+x)2dx\int_{ }^{ }\frac{x.e^x}{\left(1+x\right)^2}dx∫(1+x)2x.exdx =
ex1+x+c\frac{e^x}{1+x}+c1+xex+c
e2x+ce^{2x}+ce2x+c
ln∣sinx∣+c\ln\left|\sin x\right|+cln∣sinx∣+c
Fill in the blank:∫x4.lnxdx=..........\int_{ }^{ }x^4.\ln xdx=..........∫x4.lnxdx=..........
x55(lnx−15)+c\frac{x^5}{5}\left(\ln x-\frac{1}{5}\right)+c5x5(lnx−51)+c
xlnx−x+cx\ln x-x+cxlnx−x+c
x33(lnx−13)+c\frac{x^3}{3}\left(\ln x-\frac{1}{3}\right)+c3x3(lnx−31)+c
Complete ∫ex(1x+lnx)dx\int_{ }^{ }e^x\left(\frac{1}{x}+\ln x\right)dx∫ex(x1+lnx)dx =
ex−ce^x-cex−c
12x2(lnx−12)+c\frac{1}{2}x^2\left(\ln x-\frac{1}{2}\right)+c21x2(lnx−21)+c
exlnlnx+ce^x\ln\ln x+cexlnlnx+c
Fill in the blank:∫lnxdx=.......\int_{ }^{ }\ln xdx=.......∫lnxdx=.......
tanx−c\tan x-ctanx−c
sinx−cosx+c\sin x-\cos x+csinx−cosx+c
Fill in the blank:∫xlnxdx=........\int_{ }^{ }x\ln xdx=........∫xlnxdx=........
complete ∫e−x(cosx−sinx)dx=\int_{ }^{ }e^{-x}\left(\cos x-\sin x\right)dx=∫e−x(cosx−sinx)dx=
x44(e−xsinx+c−14)+c\frac{x^4}{4}\left(e^{-x}\sin x+c-\frac{1}{4}\right)+c4x4(e−xsinx+c−41)+c
e−xsinx+ce^{-x}\sin x+ce−xsinx+c
x33(e−xsinx+c−13)+c\frac{x^3}{3}\left(e^{-x}\sin x+c-\frac{1}{3}\right)+c3x3(e−xsinx+c−31)+c
Fill in the blank:∫xexdx=........\int_{ }^{ }xe^xdx=........∫xexdx=........
xex−ex+cxe^x-e^x+cxex−ex+c
e2x+cle^{2x}+cle2x+cl
n∣sinx∣+cn\left|\sin x\right|+cn∣sinx∣+c
Complete ∫ex(sinx+cosx)dx\int_{ }^{ }e^x\left(\sin x+\cos x\right)dx∫ex(sinx+cosx)dx =
−x2cosx-x^2\cos x−x2cosx
exln∣secx+tanx∣e^x\ln\left|\sec x+\tan x\right|exln∣secx+tanx∣
exsinx+ce^x\sin x+cexsinx+c
Fill in the blank:∫x2lnxdx=.........\int_{ }^{ }x^2\ln xdx=.........∫x2lnxdx=.........
Fill in the blank:∫x3lnxdx=.......\int_{ }^{ }x^3\ln xdx=.......∫x3lnxdx=.......
x44(lnx−1(4))+c\frac{x^4}{4}\left(\ln x-\frac{1}{\left(4\right)}\right)+c4x4(lnx−(4)1)+c
It is done.