Questions

1 / 10

Time
Score

00

Finding integrals by integration by parts

Complete ex(1x+lnx)dx\int_{ }^{ }e^x\left(\frac{1}{x}+\ln x\right)dx =

Complete x3cosxdx\int_{ }^{ }x^3\cos xdx =

Fill in the blank:x4.lnxdx=..........\int_{ }^{ }x^4.\ln xdx=..........

Complete sin1xdx=\int_{ }^{ }\sin^{-1}xdx=

Complete t2.lntdt =\int_{ }^{ }t^2.\ln tdt\ =

complete ex(cosxsinx)dx=\int_{ }^{ }e^{-x}\left(\cos x-\sin x\right)dx=

Complete e3x(2sinxcosx)xdx\int_{ }^{ }\frac{e^{3x}\left(2\sin x-\cos x\right)}{x}dx =

Complete x.ex(1+x)2dx\int_{ }^{ }\frac{x.e^x}{\left(1+x\right)^2}dx =

complete x(Tan1x)dx\int_{ }^{ }x\left(Tan^{-1}x\right)dx =

Fill in the blank:lnxdx=.......\int_{ }^{ }\ln xdx=.......