1 / 10
00
Determine the integral∫(ax+b)ndx\int_{ }^{ }\left(ax+b\right)^ndx∫(ax+b)ndx using substitution method
(ax+b)n+1an+c\frac{\left(ax+b\right)^{n+1}}{an}+can(ax+b)n+1+c
(ax+b)na(n+1)+c\frac{\left(ax+b\right)^n}{a\left(n+1\right)}+ca(n+1)(ax+b)n+c
(ax+b)n+1a(n+1)+c\frac{\left(ax+b\right)^{n+1}}{a\left(n+1\right)}+ca(n+1)(ax+b)n+1+c
Determine the integral∫(x2+1)2dx\int_{ }^{ }\left(x^2+1\right)^2dx∫(x2+1)2dx using substitution method
x55+2x33+c\frac{x^5}{5}+\frac{2x^3}{3}+c5x5+32x3+c
2x33+x+c\frac{2x^3}{3}+x+c32x3+x+c
x55+2x33+x+c\frac{x^5}{5}+\frac{2x^3}{3}+x+c5x5+32x3+x+c
Determine the integral ∫[sinxx]dx\int_{ }^{ }\left[\frac{\sin x}{x}\right]dx∫[xsinx]dx using substitution method
sec2x2+c\frac{\sec^2x}{2}+c2sec2x+c
sec3x2+c\frac{\sec^3x}{2}+c2sec3x+c
sec4x2+c\frac{\sec^4x}{2}+c2sec4x+c
Determine the integral∫[sinxx]dx\int_{ }^{ }\left[\frac{\sin x}{x}\right]dx∫[xsinx]dx using substitution method
sin4x4+c\frac{\sin^4x}{4}+c4sin4x+c
Determine the integral ∫[xcosx]dx\int_{ }^{ }\left[x\cos x\right]dx∫[xcosx]dx using substitution method
−cosx24+c-\frac{\cos x^2}{4}+c−4cosx2+c
sinx44+c\frac{\sin x^4}{4}+c4sinx4+c
sin4x4+c\frac{\sin^4x^{ }}{4}+c4sin4x+c
Determine the integral ∫x(x2+1)100dx\int_{ }^{ }x\left(x^2+1\right)^{100}dx∫x(x2+1)100dx using substitution method
(x2+1)109109+c\frac{\left(x^2+1\right)^{109}}{109}+c109(x2+1)109+c
−(x2+1)101202+c-\frac{\left(x^2+1\right)^{101}}{202}+c−202(x2+1)101+c
−(x2+1)101119+c-\frac{\left(x^2+1\right)^{101}}{119}+c−119(x2+1)101+c
Determine the integral ∫sin(2x+1)dx\int_{ }^{ }\sin\left(2x+1\right)dx∫sin(2x+1)dx using substitution method
(2x+1)2+c\frac{\left(2x+1\right)}{2}+c2(2x+1)+c
cos(2x+1)2+c\frac{\cos\left(2x+1\right)}{2}+c2cos(2x+1)+c
−cos(2x+1)2+c\frac{-\cos\left(2x+1\right)}{2}+c2−cos(2x+1)+c
Determine the integral ∫2x[sinsinx2]dx\int_{ }^{ }2x\left[\sin\sin x^2\right]dx∫2x[sinsinx2]dx using substitution method
−cosx2+c-\cos x^2+c−cosx2+c
sinx2+c\sin x^2+csinx2+c
sinx+c\sin x+csinx+c
Determine the integral∫(1−x)9dx\int_{ }^{ }\left(1-x\right)^9dx∫(1−x)9dx using substitution method
−(1−x)910−cosx2+c-\frac{\left(1-x\right)^9}{10}-\cos x^2+c−10(1−x)9−cosx2+c
−(1−x)1010+c-\frac{\left(1-x\right)^{10}}{10}+c−10(1−x)10+c
−(1−x)109+c-\frac{\left(1-x\right)^{10}}{9}+c−9(1−x)10+c
Determine the integral∫(2x+1)3dx\int_{ }^{ }\left(2x+1\right)^3dx∫(2x+1)3dx using substitution method
(2x+1)38+c\frac{\left(2x+1\right)^3}{8}+c8(2x+1)3+c
(2x+1)44+c\frac{\left(2x+1\right)^4}{4}+c4(2x+1)4+c
(2x+1)48+c\frac{\left(2x+1\right)^4}{8}+c8(2x+1)4+c
It is done.