1 / 10
00
Is the sentence true or false?
∫23v2dv=193\int_2^3v^2dv=\frac{19}{3}∫23v2dv=319
True
False
∫abddx[f(v)]dv=........., a≤x≤b, F(x) is the antiderivative of f.\int_a^b\frac{d}{dx}\left[f\left(v\right)\right]dv=.........,\ a\le x\le b,\ F\left(x\right)\ is\ the\ antiderivative\ of\ f.∫abdxd[f(v)]dv=........., a≤x≤b, F(x) is the antiderivative of f.
∫axf(v)dv\int_a^xf\left(v\right)dv∫axf(v)dv
f(b)−f(a)f\left(b\right)-f\left(a\right)f(b)−f(a)
F(b)−F(a)F\left(b\right)-F\left(a\right)F(b)−F(a)
∫axf(v)dv=F(x), a≤x≤b, F(x) is the antiderivative of f.\int_a^xf\left(v\right)dv=F\left(x\right),\ a\le x\le b,\ F\left(x\right)\ is\ the\ antiderivative\ of\ f.∫axf(v)dv=F(x), a≤x≤b, F(x) is the antiderivative of f.
Fill in the blanks:ddx[F(x)]=....... , a≤x≤b, F(x)is the antiderivative of f.\frac{d}{dx}\left[F\left(x\right)\right]=.......\ ,\ a\le x\le b,\ F\left(x\right)is\ the\ antiderivative\ of\ f.dxd[F(x)]=....... , a≤x≤b, F(x)is the antiderivative of f.
f(x)f\left(x\right)f(x)
F(x)F\left(x\right)F(x)
∫abf(v)dv=f(b)−f(a), a≤x≤b, F(x) is the antiderivative of f.\int_a^bf\left(v\right)dv=f\left(b\right)-f\left(a\right),\ a\le x\le b,\ F\left(x\right)\ is\ the\ antiderivative\ of\ f.∫abf(v)dv=f(b)−f(a), a≤x≤b, F(x) is the antiderivative of f.
Fill in the blanks:ddx[∫ah(x)f(v)dv]\frac{d}{dx}\left[\int_a^{h\left(x\right)}f\left(v\right)dv\right]dxd[∫ah(x)f(v)dv] =..........,a≤x≤b, F(x)is the antiderivative of f.a\le x\le b,\ F\left(x\right)is\ the\ antiderivative\ of\ f.a≤x≤b, F(x)is the antiderivative of f.
ddx[∫ah(x)f(v)dv]\frac{d}{dx}\left[\int_a^{h\left(x\right)}f\left(v\right)dv\right]dxd[∫ah(x)f(v)dv]
f[h(x)] ddxh(x)f\left[h\left(x\right)\right]\ \ \frac{d}{dx}h\left(x\right)f[h(x)] dxdh(x)
F(h(x))F\left(h\left(x\right)\right)F(h(x))
Fill in the blanks: ∫abf(v)dv=...........,a≤x≤b, F(x) is the antiderivative off.\int_a^bf\left(v\right)dv=...........,a\le x\le b,\ F\left(x\right)\ is\ the\ antiderivative\ off.∫abf(v)dv=...........,a≤x≤b, F(x) is the antiderivative off.
Fill in the blanks: ∫abf(v)dv=..........,a≤x≤b, F(x) is the antiderivative of f.\int_a^bf\left(v\right)dv=..........,a\le x\le b,\ F\left(x\right)\ is\ the\ antiderivative\ of\ f.∫abf(v)dv=..........,a≤x≤b, F(x) is the antiderivative of f.
∫48−2v3dv=−1920\int_4^8-2v^3dv=-1920∫48−2v3dv=−1920
Fill in the blanks:
ddx[F(x)]=...........,a≤x≤b\frac{d}{dx}\left[F\left(x\right)\right]=...........,a\le x\le bdxd[F(x)]=...........,a≤x≤b, F(x) is the antiderivative of f.
It is done.