1 / 10
00
Find limx→1(x+x2)\lim_{x\to1}\left(x+x^2\right)limx→1(x+x2)
2
1
4
5
Fill in the blanks.
The value of
limx→2(x3+x2)\lim_{x\to2}\left(x^3+x^2\right)limx→2(x3+x2)
12
32
42
25
Is this statement true or false?
Find the value of
limx→1(x3−x2)=1\lim_{x\to1}\left(x^3-x^2\right)=1limx→1(x3−x2)=1
True
False
Find limx→1(x3.3x2)\lim_{x\to1}\left(x^3.3x^2\right)limx→1(x3.3x2)
3
Evaluate the value of
limx→0(x−x3)\lim_{x\to0}\left(x^{ }-x^3\right)limx→0(x−x3)
0
6
8
limx→3(x+x2)\lim_{x\to3}\left(x+x^2\right)limx→3(x+x2) =
13
15
31
limx→5(7x+1−x2)\lim_{x\to5}\left(7x+1-x^2\right)limx→5(7x+1−x2)
9
10
11
40
limx→1(5x.x4)\lim_{x\to1}\left(5x.x^4\right)limx→1(5x.x4)
Fill in the blanks.
limx→−3(x4.2x2)\lim_{x\to-3}\left(x^4.2x^2\right)limx→−3(x4.2x2) is
2099
1584
9921
9147
limx→−1(x−x2)=−1\lim_{x\to-1}\left(x^{ }-x^2\right)=-1limx→−1(x−x2)=−1
It is done.