1 / 10
00
Evaluate the value of
limx→19x43x3\lim_{x\to1}\frac{9x^4}{3x^3}limx→13x39x4
2
3
4
5
Is this statement true or false?
The value of limx→1((x3+3)x2+1)\lim_{x\to1}\left(\frac{\left(x^3+3\right)}{x^2+1}\right)limx→1(x2+1(x3+3))
True
False
The value of
limx→5(−2x+553x)\lim_{x\to5}\left(\frac{-2x+55}{3x}\right)limx→5(3x−2x+55)
Find the value of
limx→−1(2x2−2x2)\lim_{x\to-1}\left(\frac{2x^2-2}{x^2}\right)limx→−1(x22x2−2)
-2
0
-8
limx→3((4x2+7x2)x2)\lim_{x\to3}\left(\frac{\left(4x^2+7x^2\right)}{x^2}\right)limx→3(x2(4x2+7x2))
11
12
41
13
Evaluate limx→1 ((2x+2)x2)\lim_{x\to1}\ \left(\frac{\left(2x+2\right)}{x^2}\right)limx→1 (x2(2x+2))
Fill in the blanks
The value of limx→−3((x4+19)2x2+2)\lim_{x\to-3}\left(\frac{\left(x^4+19\right)}{2x^2+2}\right)limx→−3(2x2+2(x4+19)) is
7
limx→1(6x+2x4)\lim_{x\to1}\left(\frac{6x+2}{x^4}\right)limx→1(x46x+2)
6
8
limx→2(x3+4x2)\lim_{x\to2}\left(\frac{x^3+4}{x^2}\right)limx→2(x2x3+4) is
limx→0(x+18x3+3)\lim_{x\to0}\left(\frac{x+18}{x^3+3}\right)limx→0(x3+3x+18)
It is done.