1 / 10
00
Evaluate limx→0 (1−cosx)x2\lim_{x\to0\ }\ \frac{\left(1-\cos x\right)}{x^2}limx→0 x2(1−cosx)
1/2
1/4
2/3
5/3
Fill in the blanks
The value of limx→3 (17xsin(1(x)))\lim_{x\to3}\ \left(17x\sin\left(\frac{1}{\left(x\right)}\right)\right)limx→3 (17xsin((x)1)) is
-1
0
1
2
The value of limx→3 (1x−1sinx)\lim_{x\to3}\ \left(\frac{1}{x}-\frac{1}{\sin x}\right)limx→3 (x1−sinx1) is
The value oflimx→3 (xsin(1x))\lim_{x\to3}\ \left(x\sin\left(\frac{1}{x}\right)\right)limx→3 (xsin(x1)) is
The value of limx→0 10 secx\lim_{x\to0}\ 10\ \sec xlimx→0 10 secx is
10
5
Evaluate limx→0 (cosx−x)sinx+1\lim_{x\to0}\ \frac{\left(\cos x-x\right)}{\sin x+1}limx→0 sinx+1(cosx−x)
3
Evaluate limx→0 2(cosx−x)sinx+1\lim_{x\to0}\ \frac{2\left(\cos x-x\right)}{\sin x+1}limx→0 sinx+12(cosx−x)
Evaluate limx→0 (2(1−cosx)x2)\lim_{x\to0}\ \left(\frac{2\left(1-\cos x\right)}{x^2}\right)limx→0 (x22(1−cosx))
The value oflimx→0 (xsinx)\lim_{x\to0}\ \left(x\sin x\right)limx→0 (xsinx) is
The value of limx→0 5 cosx\lim_{x\to0}\ 5\ \cos xlimx→0 5 cosx is
It is done.