1 / 10
00
Fill in the blank
∑i=1nai+∑i=1nbi\sum_{i=1}^nai+\sum_{i=1}^nbi∑i=1nai+∑i=1nbi =
∑i=1n(ai +bi)\sum_{i=1}^n\left(ai\ +bi\right)∑i=1n(ai +bi)
∑i=1n(ai−bi)\sum_{i=1}^n\left(ai-bi\right)∑i=1n(ai−bi)
∑i=3n(ai+bi)\sum_{i=3}^n\left(ai+bi\right)∑i=3n(ai+bi)
∑i=16(1) =\sum_{i=1}^6\left(1\right)\ =∑i=16(1) =
4
6
n
∑a\sum_{ }^{ }a∑a -∑2b\sum_{ }^{ }2b∑2b =
∑(a+b)\sum_{ }^{ }\left(a+b\right)∑(a+b)
∑(a−2b)\sum_{ }^{ }\left(a-2b\right)∑(a−2b)
∑(a2+b)\sum_{ }^{ }\left(a^2+b\right)∑(a2+b)
Fill in the blank ∑i=1nkai =\sum_{i=1}^nkai\ =∑i=1nkai =
k∑i=1naik\sum_{i=1}^naik∑i=1nai
k∑i=0naik\sum_{i=0}^naik∑i=0nai
∑i=1nai\sum_{i=1}^nai∑i=1nai
∑k=1nk + ∑k=1nk2=\sum_{k=1}^nk\ +\ \sum_{k=1}^nk^2=∑k=1nk + ∑k=1nk2=
∑k=1n(k −k2)\sum_{k=1}^n\left(k\ -k^2\right)∑k=1n(k −k2)
∑k=0n(k −k2)=\sum_{k=0}^n\left(k\ -k^2\right)=∑k=0n(k −k2)=
∑k=1n(k + k2)\sum_{k=1}^n\left(k\ +\ k^2\right)∑k=1n(k + k2)
∑n=0∞(32n)\sum_{n=0}^{\infty}\left(\frac{3}{2^n}\right)∑n=0∞(2n3)
5
8
∑n=0∞(1n)\sum_{n=0}^{\infty}\left(\frac{1}{n}\right)∑n=0∞(n1) series
Converges
diverges
0
∑7a+∑4b =\sum_{ }^{ }7a+\sum_{ }^{ }4b\ =∑7a+∑4b =
∑(7a+4b)\sum_{ }^{ }\left(7a+4b\right)∑(7a+4b)
∑(a−b)\sum_{ }^{ }\left(a-b\right)∑(a−b)
∑k=132k=\sum_{k=1}^32k=∑k=132k=
13
12
14
∑a +∑b\sum_{ }^{ }a\ +\sum_{ }^{ }b∑a +∑b =
It is done.