1 / 10
00
Rewrite the expression ln(cotcotx)\ln\left(\cot\cot x\right)ln(cotcotx) using trigonometric identities
−ln(sinsinx)-\ln\left(\sin\sin x\right)−ln(sinsinx)
ln(coscosx)\ln\left(\cos\cos x\right)ln(coscosx)
−lnln(sinx)+ln(coscosx)-\ln\ln\left(\sin x\right)+\ln\left(\cos\cos x\right)−lnln(sinx)+ln(coscosx)
Rewrite the expression ln(cotcotx)\ln\left(\sqrt{\cot\cot x}\right)ln(cotcotx) using trigonometric identities
12lnln(cosxsinx)\frac{1}{2}\ln\ln\left(\frac{\cos x}{\sin x}\right)21lnln(sinxcosx)
12lnln(sinxcosx)\frac{1}{2}\ln\ln\left(\frac{\sin x}{\cos x}\right)21lnln(cosxsinx)
ln(tantanx)\ln\left(\sqrt{\tan\tan x}\right)ln(tantanx)
Rewrite the expression ln(csccscx)\ln\left(\csc\csc x\right)ln(csccscx) using trigonometric identities
ln(cotcotx)\ln\left(\cot\cot x\right)ln(cotcotx)
log(ab)?\log\left(ab\right)?log(ab)?
log(a)+log(b)\log\left(a\right)+\log\left(b\right)log(a)+log(b)
log(a+b)?\log\left(a+b\right)?log(a+b)?
log(a)−log(b)\log\left(a\right)-\log\left(b\right)log(a)−log(b)
Rewrite the expression ln(1−x)\ln\left(\sqrt{1-x}\right)ln(1−x) using trigonometric identities
−2ln(sinsinx)-2\ln\left(\sin\sin x\right)−2ln(sinsinx)
−ln(x)-\ln\left(x\right)−ln(x)
−2ln(coscosx)-2\ln\left(\cos\cos x\right)−2ln(coscosx)
Rewrite the expression ln(tantanx)\ln\left(\tan\tan x\right)ln(tantanx) using trigonometric identities
lnln(sinsinx)−ln(coscosx)\ln\ln\left(\sin\sin x\right)-\ln\left(\cos\cos x\right)lnln(sinsinx)−ln(coscosx)
Rewrite the expression ln(1+x)\ln\left(\sqrt{1+x}\right)ln(1+x) using trigonometric identities
3ln(coscosx)3\ln\left(\cos\cos x\right)3ln(coscosx)
Rewrite the expression ln(csccscxcosx)\ln\left(\csc\csc x\cos x\right)ln(csccscxcosx) using trigonometric identities
log(ab)?\log\left(\frac{a}{b}\right)?log(ba)?
log(a+b)\log\left(a+b\right)log(a+b)
Rewrite the expression ln((secsecx))\ln\left(\sqrt{\left(\sec\sec x\right)}\right)ln((secsecx)) using trigonometric identities
ln(tantanx)\ln\left(\tan\tan x\right)ln(tantanx)
ln((cotcotx))\ln\left(\sqrt{\left(\cot\cot x\right)}\right)ln((cotcotx))
−12ln(coscosx)-\frac{1}{2}\ln\left(\cos\cos x\right)−21ln(coscosx)
It is done.