1 / 10
00
Simplify by factoring out the least powers
f’(x) = (1-x2)1/2 + (1-x2)-1/2
∣2x−3x3∣1−x2\frac{\left|2x-3x^3\right|}{\sqrt{1-x^2}}1−x2∣2x−3x3∣
∣2−x2∣1−x2\frac{\left|2-x^2\right|}{\sqrt{1-x^2}}1−x2∣2−x2∣
∣1−2x2∣1−x2\frac{\left|1-2x^2\right|}{\sqrt{1-x^2}}1−x2∣1−2x2∣
f’(x) = (1/5) x-1/2 – (3/5) (x)1/2
15(1x−3x)\frac{1}{5}\left(\frac{1}{\sqrt{x}}-3\sqrt{x}\right)51(x1−3x)
12(1x−3x)\frac{1}{2}\left(\frac{1}{\sqrt{x}}-3\sqrt{x}\right)21(x1−3x)
−3(1x4+1x52)-3\left(\frac{1}{x^4}+\frac{1}{x^{\frac{5}{2}}}\right)−3(x41+x251)
f’(x) = x-4+ x-3/2
∣−x2∣1−x2\frac{\left|-x^2\right|}{\sqrt{1-x^2}}1−x2∣−x2∣
2(1x4+1x32)2\left(\frac{1}{x^4}+\frac{1}{x^{\frac{3}{2}}}\right)2(x41+x231)
f’(x) = 2 x-4 + 2(x)-3/2
−3(1x4+1x32)-3\left(\frac{1}{x^4}+\frac{1}{x^{\frac{3}{2}}}\right)−3(x41+x231)
f’(x) = (1-x2 )1/2 – x2 (1- x2)-1/2
∣x+3x3∣1−x2\frac{\left|x+3x^3\right|}{\sqrt{1-x^2}}1−x2∣x+3x3∣
f’(x) = (1-x2 )1/2 –(1- x2)-1/2
f’(x) = 5x-4+ 5x-1/2-5
5(1x4+1x12−1)5\left(\frac{1}{x^4}+\frac{1}{x^{\frac{1}{2}}}-1\right)5(x41+x211−1)
[−x2]1−x2\frac{\left[-x^2\right]}{\sqrt{1-x^2}}1−x2[−x2]
f’(x) =(1/7) x-1/2-(3/7)x1/2
17(1x−3x)\frac{1}{7}\left(\frac{1}{\sqrt{x}}-3\sqrt{x}\right)71(x1−3x)
f’(x) = -3x-4 -3 x-5/2+3
−3(1x4+1x52+1)-3\left(\frac{1}{x^4}+\frac{1}{x^{\frac{5}{2}}}+1\right)−3(x41+x251+1)
f’(x) = (1/2) x-1/2 – (3/2) (x)1/2
It is done.