1 / 10
00
Use product-to-sum formulas to rewrite cosx.cosy
12(coscos(x−y))12(coscos(2x−5y)+coscos(2x−5y))\frac{1}{2}\left(\cos\cos\left(x-y\right)\right)\frac{1}{2}\left(\cos\cos\left(2x-5y\right)+\cos\cos\left(2x-5y\right)\right)21(coscos(x−y))21(coscos(2x−5y)+coscos(2x−5y))
12(coscos(x−y)+coscos(x+y))\frac{1}{2}\left(\cos\cos\left(x-y\right)+\cos\cos\left(x+y\right)\right)21(coscos(x−y)+coscos(x+y))
12(coscos(2x−5y)−coscos(2x+5y))\frac{1}{2}\left(\cos\cos\left(2x-5y\right)-\cos\cos\left(2x+5y\right)\right)21(coscos(2x−5y)−coscos(2x+5y))
Use product-to-sum formulas to rewrite sin6x.sin4x
12(sinsin5x+sinsinx)\frac{1}{2}\left(\sin\sin5x+\sin\sin x\right)21(sinsin5x+sinsinx)
12(sinsin3x+sinsinx)\frac{1}{2}\left(\sin\sin3x+\sin\sin x\right)21(sinsin3x+sinsinx)
12(coscos(2x)−coscos(10x))\frac{1}{2}\left(\cos\cos\left(2x\right)-\cos\cos\left(10x\right)\right)21(coscos(2x)−coscos(10x))
Use product-to-sum formulas to rewrite sin3x.sin2x
12(coscos(x)−coscos(5x))\frac{1}{2}\left(\cos\cos\left(x\right)-\cos\cos\left(5x\right)\right)21(coscos(x)−coscos(5x))
Use product-to-sum formulas to rewrite sin2x.cosx
Use product-to-sum formulas to rewrite cosx.cos2x
12(coscos(2x−5y)−coscos(2x−5y))\frac{1}{2}\left(\cos\cos\left(2x-5y\right)-\cos\cos\left(2x-5y\right)\right)21(coscos(2x−5y)−coscos(2x−5y))
12(coscos(x−y)−coscos(x+y))\frac{1}{2}\left(\cos\cos\left(x-y\right)-\cos\cos\left(x+y\right)\right)21(coscos(x−y)−coscos(x+y))
12(coscos(−x)−coscos(3x))\frac{1}{2}\left(\cos\cos\left(-x\right)-\cos\cos\left(3x\right)\right)21(coscos(−x)−coscos(3x))
Use product-to-sum formulas to rewrite sin7x.sin4x
12(coscos3x−coscos11x)\frac{1}{2}\left(\cos\cos3x-\cos\cos11x\right)21(coscos3x−coscos11x)
12(coscos2x−coscos10x)\frac{1}{2}\left(\cos\cos2x-\cos\cos10x\right)21(coscos2x−coscos10x)
Use product-to-sum formulas to rewrite sin5x.sin2x
12(coscos(3x)−coscos(7x))\frac{1}{2}\left(\cos\cos\left(3x\right)-\cos\cos\left(7x\right)\right)21(coscos(3x)−coscos(7x))
Use product-to-sum formulas to rewrite sin4x.cos2x
12(sinsin6x+sinsin2x)\frac{1}{2}\left(\sin\sin6x+\sin\sin2x\right)21(sinsin6x+sinsin2x)
Use product-to-sum formulas to rewrite sin3x.cos2x
12(sinsin(5x)+sinsin(x))\frac{1}{2}\left(\sin\sin\left(5x\right)+\sin\sin\left(x\right)\right)21(sinsin(5x)+sinsin(x))
12(sinsin(11x)+sinsin(x))\frac{1}{2}\left(\sin\sin\left(11x\right)+\sin\sin\left(x\right)\right)21(sinsin(11x)+sinsin(x))
Use product-to-sum formulas to rewrite sin6x.cos5x
It is done.