1 / 10
00
Use sum-to-product formulas to rewrite: 12(sinsin(3x)+sinsin(x))\frac{1}{2}\left(\sin\sin\left(3x\right)+\sin\sin\left(x\right)\right)21(sinsin(3x)+sinsin(x))
sin2xcosx\sin2x\cos xsin2xcosx
sin2xcos3x\sin2x\cos3xsin2xcos3x
sin2xcos5x\sin2x\cos5xsin2xcos5x
Use sum-to-product formulas to rewrite:12(coscos(2x)+coscos10x)\frac{1}{2}\left(\cos\cos\left(2x\right)+\cos\cos10x\right)21(coscos(2x)+coscos10x)
sinsin(5x)sinsin(x)\sin\sin\left(5x\right)\sin\sin\left(x\right)sinsin(5x)sinsin(x)
sin6xsin4x\sin6x\sin4xsin6xsin4x
sin6xsinx\sin6x\sin xsin6xsinx
Use sum-to-product formulas to rewrite:12(coscos(x)+coscos5x)\frac{1}{2}\left(\cos\cos\left(x\right)+\cos\cos5x\right)21(coscos(x)+coscos5x)
sin3xsinx\sin3x\sin xsin3xsinx
sinxsin2x\sin x\sin2xsinxsin2x
sin3xsin2x\sin3x\sin2xsin3xsin2x
Use sum-to-product formulas to rewrite: 12(sinsin(11x)+sinsinx)\frac{1}{2}\left(\sin\sin\left(11x\right)+\sin\sin x\right)21(sinsin(11x)+sinsinx)
4sin6xcos5x4\sin6x\cos5x4sin6xcos5x
sinxcos5x\sin x\cos5xsinxcos5x
sin6xcos5x\sin6x\cos5xsin6xcos5x
Use sum-to-product formulas to rewrite:12(coscos(3x)+coscos7x)\frac{1}{2}\left(\cos\cos\left(3x\right)+\cos\cos7x\right)21(coscos(3x)+coscos7x)
sin5xsin2x\sin5x\sin2xsin5xsin2x
sin5xsinx\sin5x\sin xsin5xsinx
Use sum-to-product formulas to rewrite:12(coscos(3x)−coscos11x)\frac{1}{2}\left(\cos\cos\left(3x\right)-\cos\cos11x\right)21(coscos(3x)−coscos11x)
sin7xsinx\sin7x\sin xsin7xsinx
sinxsin4x\sin x\sin4xsinxsin4x
sin7xsin4x\sin7x\sin4xsin7xsin4x
Use sum-to-product formulas to rewrite: 12(coscos(−x)+coscos(3x))\frac{1}{2}\left(\cos\cos\left(-x\right)+\cos\cos\left(3x\right)\right)21(coscos(−x)+coscos(3x))
cosxcos2x\cos x\cos2xcosxcos2x
3cosxcos2x3\cos x\cos2x3cosxcos2x
cos4xcos2x\cos4x\cos2xcos4xcos2x
Use sum-to-product formulas to rewrite 12(cos(x−y)+cos(x+y))\frac{1}{2}\left(\cos\left(x-y\right)+\cos\left(x+y\right)\right)21(cos(x−y)+cos(x+y))
2cosxcosy2\cos x\cos y2cosxcosy
12(cosxcosy)\frac{1}{2}\left(\cos x\cos y\right)21(cosxcosy)
cosxcosy\cos x\cos ycosxcosy
Use sum-to-product formulas to rewrite sin3xcos2x\sin3x\cos2xsin3xcos2x
sin5xsinsinx\sin5x\sin\sin xsin5xsinsinx
sinxcos2x\sin x\cos2xsinxcos2x
sin3xcos2x\sin3x\cos2xsin3xcos2x
Use sum-to-product formulas to rewrite: 12(sinsin(6x)+sinsin2x)\frac{1}{2}\left(\sin\sin\left(6x\right)+\sin\sin2x\right)21(sinsin(6x)+sinsin2x)
sin4xcosx\sin4x\cos xsin4xcosx
sin4xcos2x\sin4x\cos2xsin4xcos2x
It is done.