1 / 10
00
If coordinates of the point are (1/2, √3/2) then find the angle.
360°
90°
60°
Find the coordinates of the point (x ,y ) where the terminal side of the -300 angle intersects the unit circle.
(12,12)\left(\frac{1}{2},\frac{1}{2}\right)(21,21)
(32,52)\left(\frac{\sqrt{3}}{2},\frac{5}{2}\right)(23,25)
(32,−12)\left(\frac{\sqrt{3}}{2},\frac{-1}{2}\right)(23,2−1)
Fill in the blanks:
In 30-60-90, the sides are in the ratio __________.
1:3\sqrt{3}3 :1
1:3\sqrt{3}3 :2
2:3\sqrt{3}3 :2
Find the coordinates of the point (x ,y ) where the terminal side of the -600 angle intersects the unit circle.
(12,−32)\left(\frac{1}{2},\frac{-\sqrt{3}}{2}\right)(21,2−3)
(32,12)\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)(23,21)
Is the sentence true or false?
In a 30 -60 -90 triangle, the length of the hypotenuse is twice the length of the shorter leg.
True
False
The cosine function of an angle t equals the y-value of the endpoint on the unit circle of an arc of length t.
If coordinates of the point are (32,12)\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)(23,21) then find the angle.
30°
The 30-60-90 triangle is called a special right triangle as the angles of this triangle are in a unique ratio of _____________.
1:2:3
2:2:3
1:3:3
Find the coordinates of the point (x ,y ) where the terminal side of the 600 angle intersects the unit circle.
(12,32)\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)(21,23)
In a 30 -60 -90 triangle, the length of the longer leg is 3\sqrt{3}3 times the length of the shorter leg.
It is done.