1 / 10
00
A person stands 150 ft away from a flagpole and measures an angle of elevation of 32∘ from his horizontal line of sight to the top of the flagpole. Assume that the person's eyes are a vertical distance of 6 ft from the ground. What is the height of the flagpole?
100 ft
115 ft
145 ft
Find the height of the triangle whose base is two-thirds of its height and area is 225 cm2.
15√3 cm
5√3 cm
An observer at the top of a mountain 3 miles above sea level measures an angle of depression of 2.23∘ to the ocean horizon. Use this to estimate the radius of the earth.
3956.6 miles
2956.6 miles
Find the area of a triangle whose altitude and base are 12 cm and 7 cm, respectively
42 cm2
72 cm2
An airship is flying at an altitude of 800 m when it spots a village in the distance with a depression angle of 12°12°12° . How far is the village from where the plane is flying over?
6432 m
3442 m
3763.7 m
An observer on earth measures an angle of 32′4′′ from one visible edge of the sun to the other (opposite) edge, as in the picture on the right. Use this to estimate the radius of the sun.
232,200 miles
432,200 miles
Calculate the area of a triangular field, knowing that two of its sides measure 80m and 130m and between them is an angle of 70°.70°.70°.
4886.40 m2
1886.40 m2
A tree 50m tall casts a shadow 60m long. Find the angle of elevation of the sun at that time.
39.8°39.8°39.8°
49.9°49.9°49.9°
A blimp 4280 ft above the ground measures an angle of depression of 24∘ from its horizontal line of sight to the base of a house on the ground. Assuming the ground is flat, how far away along the ground is the house from the blimp?
1829 ft
9613 ft
4845 ft
A person standing 400 ft from the base of a mountain measures the angle of elevation from the ground to the top of the mountain to be 25∘ . The person then walks 500 ft straight back and measures the angle of elevation to now be 20∘ . How tall is the mountain?
829 ft
815 ft
845 ft
It is done.