1 / 10
00
(1s)′(x)=13x\left(\frac{1}{s}\right)'\left(x\right)=\frac{1}{3x}(s1)′(x)=3x1
(1s)′(x)=12x\left(\frac{1}{s}\right)'\left(x\right)=\frac{1}{2x}(s1)′(x)=2x1
(1s)′(x)=1x\left(\frac{1}{s}\right)'\left(x\right)=\frac{1}{x}(s1)′(x)=x1
(1m)′(x)=cosxsin2x\left(\frac{1}{m}\right)'\left(x\right)=\frac{\cos x}{\sin^2x}(m1)′(x)=sin2xcosx
(1m)′(x)=−cosxsin2x\left(\frac{1}{m}\right)'\left(x\right)=\frac{-\cos x}{\sin^2x}(m1)′(x)=sin2x−cosx
(1m)′(x)=cosxsinx\left(\frac{1}{m}\right)'\left(x\right)=\frac{\cos x}{\sin x}(m1)′(x)=sinxcosx
(1u)′(x)=ex\left(\frac{1}{u}\right)'\left(x\right)=e^x(u1)′(x)=ex
(1u)′(x)=e−x\left(\frac{1}{u}\right)'\left(x\right)=e^{-x}(u1)′(x)=e−x
(1u)′(x)=2ex\left(\frac{1}{u}\right)'\left(x\right)=2e^x(u1)′(x)=2ex
Let g(x) = xg\left(x\right)\ =\ \sqrt{x}g(x) = x . What is (1g)′ (x)\left(\frac{1}{g}\right)'\ \left(x\right)(g1)′ (x)?
(1g)′ (x) = 12x\left(\frac{1}{g}\right)'\ \left(x\right)\ =\ \frac{1}{2\sqrt{x}}(g1)′ (x) = 2x1
(1g)′ (x) = −12x\left(\frac{1}{g}\right)'\ \left(x\right)\ =\ -\frac{1}{2\sqrt{x}}(g1)′ (x) = −2x1
(1g)′ (x) = −2x\left(\frac{1}{g}\right)'\ \left(x\right)\ =\ -2\sqrt{x}(g1)′ (x) = −2x
(1t)′(x)=sinxcos2x\left(\frac{1}{t}\right)'\left(x\right)=\frac{\sin x}{\cos^2x}(t1)′(x)=cos2xsinx
(1t)′(x)=sinxcosx\left(\frac{1}{t}\right)'\left(x\right)=\frac{\sin x}{\cos x}(t1)′(x)=cosxsinx
(1t)′(x)=2sinxcosx\left(\frac{1}{t}\right)'\left(x\right)=\frac{2\sin x}{\cos x}(t1)′(x)=cosx2sinx
(1w)′(x)=−2x3\left(\frac{1}{w}\right)'\left(x\right)=-\frac{2}{x^3}(w1)′(x)=−x32
(1w)′(x)=2x3\left(\frac{1}{w}\right)'\left(x\right)=\frac{2}{x^3}(w1)′(x)=x32
(1w)′(x)=2x\left(\frac{1}{w}\right)'\left(x\right)=\frac{2}{x}(w1)′(x)=x2
(1q)′(x)=1x2\left(\frac{1}{q}\right)'\left(x\right)=\frac{1}{x^2}(q1)′(x)=x21
(1q)′(x)=1x\left(\frac{1}{q}\right)'\left(x\right)=\frac{1}{x^{ }}(q1)′(x)=x1
(1q)′(x)=12x2\left(\frac{1}{q}\right)'\left(x\right)=\frac{1}{2x^2}(q1)′(x)=2x21
(1v)′(x)=−cos2xtan2x\left(\frac{1}{v}\right)'\left(x\right)=-\frac{\cos^2x}{\tan^2x}(v1)′(x)=−tan2xcos2x
(1v)′(x)=−2cos2xtan2x\left(\frac{1}{v}\right)'\left(x\right)=-2\frac{\cos^2x}{\tan^2x}(v1)′(x)=−2tan2xcos2x
(1v)′(x)=−3cos2xtan2x\left(\frac{1}{v}\right)'\left(x\right)=-3\frac{\cos^2x}{\tan^2x}(v1)′(x)=−3tan2xcos2x
(1h)′(x)=e−x\left(\frac{1}{h}\right)'\left(x\right)=e^{-x}(h1)′(x)=e−x
(1h)′(x)=ex\left(\frac{1}{h}\right)'\left(x\right)=e^x(h1)′(x)=ex
(1h)′(x)=e\left(\frac{1}{h}\right)'\left(x\right)=e^{ }(h1)′(x)=e
(1r)′(x)=−3x4\left(\frac{1}{r}\right)'\left(x\right)=-\frac{3}{x^4}(r1)′(x)=−x43
(1r)′(x)=3x4\left(\frac{1}{r}\right)'\left(x\right)=\frac{3}{x^4}(r1)′(x)=x43
(1r)′(x)=3x\left(\frac{1}{r}\right)'\left(x\right)=\frac{3}{x^{ }}(r1)′(x)=x3
It is done.