1 / 10
00
Is the sentence true or false?
|(9+2i)| = |(9+2i)|.
True
False
z1/z2 = z1(z2/|z2|^2).
The distance between the two points z1=1+5i and z2=2+3i in complex plane is 7.
|(5+2i)| > |(5+2i)|.
Fill in the blank:
If z=3i, then |z+z̄| = ________.
090909
333
000
|(2+3i)-(2+3i)| ≤ |(2+3i)|.
|(1+5i)^8| = ______.
5(∣1+i∣)85\left(\right|1+i\left|\right)^85(∣1+i∣)8
(1+5i)8\left(1+5i\right)^8(1+5i)8
(∣1+5i∣)8\left(\right|1+5i\left|\right)^8(∣1+5i∣)8
∣(1+2i)(2+3i)∣2 =∣(1+2i)(2+3i)∣^2\ =∣(1+2i)(2+3i)∣2 =__________.
∣(1+2i)(2+3i)∣\left|\left(1+2i\right)\left(2+3i\right)\right|∣(1+2i)(2+3i)∣
∣(1+2i)(2+3i)∣∣(1+2i)(2+3i)∣
∣(1+2i)+(2+3i)∣\left|\left(1+2i\right)+\left(2+3i\right)\right|∣(1+2i)+(2+3i)∣
Let z1, z2, are complex numbers. Then, |(1+2i)(2+3i)| =________.
∣1+2i∣−∣(2+3i)∣\left|1+2i\right|-\left|\left(2+3i\right)\right|∣1+2i∣−∣(2+3i)∣
∣1+2i∣+∣(2+3i)∣\left|1+2i\right|+\left|\left(2+3i\right)\right|∣1+2i∣+∣(2+3i)∣
∣1+2i∣∣(2+3i)∣\left|1+2i\right|\left|\left(2+3i\right)\right|∣1+2i∣∣(2+3i)∣
|7+i| = |7+i|.
It is done.